JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Induzione dell'infiammazione della superficie oculare e raccolta dei tessuti coinvolti

Published: August 4th, 2022

DOI:

10.3791/63890

1Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 2Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen

L'infiammazione della superficie oculare danneggia i tessuti della superficie oculare e compromette le funzioni vitali dell'occhio. Il presente protocollo descrive un metodo per indurre l'infiammazione oculare e raccogliere i tessuti compromessi in un modello murino di disfunzione della ghiandola di Meibomio (MGD).

Le malattie della superficie oculare comprendono una serie di disturbi che disturbano le funzioni e le strutture della cornea, della congiuntiva e della rete di ghiandole superficiali oculari associate. Le ghiandole di Meibomio (MG) secernono lipidi che creano uno strato di copertura che impedisce l'evaporazione della parte acquosa del film lacrimale. I neutrofili e le trappole del DNA extracellulare popolano la MG e la superficie oculare in un modello murino di malattia allergica dell'occhio. Le trappole extracellulari aggregate di neutrofili (aggNET) formulano una matrice simile a una maglia composta da cromatina extracellulare che occlude le prese di MG e condiziona la disfunzione della MG. Qui viene presentato un metodo per indurre l'infiammazione della superficie oculare e la disfunzione MG. Le procedure per la raccolta di organi relativi alla superficie oculare, come la cornea, la congiuntiva e le palpebre, sono descritte in dettaglio. Utilizzando tecniche consolidate per l'elaborazione di ciascun organo, vengono anche mostrate le principali caratteristiche morfologiche e istopatologiche della disfunzione MG. Gli essudati oculari offrono l'opportunità di valutare lo stato infiammatorio della superficie oculare. Queste procedure consentono lo studio di interventi antinfiammatori topici e sistemici a livello preclinico.

Ogni battito di ciglia riempie il film lacrimale liscio disperso sulla cornea. Gli epiteli della superficie oculare facilitano la distribuzione e il corretto orientamento del film lacrimale sulla superficie oculare. Le mucine sono fornite dalla cornea e dalle cellule epiteliali congiuntiva per aiutare a posizionare la parte acquosa del film lacrimale proveniente dalle ghiandole lacrimali sulla superficie degli occhi. Infine, MG secerne lipidi che creano uno strato di copertura che impedisce l'evaporazione della parte acquosa del film lacrimale 1,2,3. In questo modo, le funzio....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tutte le procedure che coinvolgono gli animali sono state condotte secondo le linee guida istituzionali sul benessere degli animali e approvate dalla commissione per il benessere degli animali della Friedrich-Alexander-University Erlangen-Nuremberg (FAU) (numero di autorizzazione: 55.2.2-2532-2-1217). Per il presente studio sono stati utilizzati topi femmina C57Bl/6, di età compresa tra 7 e 9 settimane. I topi sono stati ottenuti da fonti commerciali (vedi Tabella dei materiali) e tenuti in condizioni s.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Il presente protocollo descrive i passaggi sequenziali per stabilire un modello murino di infiammazione della superficie oculare. I protocolli mirano a mostrare come applicare le terapie localmente, ottenere essudati oculari e asportare organi accessori associati come palpebre sane e infiammate (Figura 2), la cornea e la congiuntiva. Bisogna prestare attenzione quando le palpebre superiori vengono sezionate per l'isolamento della congiuntiva e deve essere conservato in 1x PBS durante la diss.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

La secrezione oleosa delle ghiandole di Meibomio è di grande importanza per un occhio sano22. Tuttavia, l'ostruzione di queste ghiandole sebacee da parte di trappole extracellulari di neutrofili aggregati (aggNET) che si allineano come filamenti paralleli situati sulle placche tarsali di entrambe le palpebre può interrompere il film lacrimale23. Questa interruzione provoca disfunzione della ghiandola di Meibomio (MGD)1 e un'evaporazione lacrimale a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Questo lavoro è stato parzialmente sostenuto dalla Fondazione tedesca per la ricerca (DFG) 2886 PANDORA Project-No.B3; SCHA 2040/1-1; MU 4240/2-1; CRC1181(C03); TRR241(B04), H2020-FETOPEN-2018-2020 Project 861878, e dalla Volkswagen-Stiftung (Grant 97744) a MH.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1x PBSGibco
Aluminium HydroxideImject alum Adjuvant7716140 mg/ mL
Final Concentration: in vivo: 1 mg/ 100 µL
C57Bl/6 mice, aged 7–9 weeksCharles River Laboratories 
CalciumCarl rothCN93.11 M
Final Concentration: 5 mM
Curved forcepsFST by Dumont SWITZERLAND5/45 11251-35
Fine sharp scissorFST Stainless steel, Germany15001-08
Laminar safety cabinetHerasafe
Macrophotography CameraCanonEOS6D
Macrophotography Camera (without IR filter)NikonD5300
MnaseNew England biolabsM0247S2 x 106 gel U/mL
Multi-analyte flow assay kit (Custom mouse 13-plex panel)BiolegendCLPX-200421AM-UERLAN
NaCl 0,9% (Saline)B.Braun
Ovalbumin (OVA)Endofit, Invivogen9006-59-110 mg/200 µL in saline
Pertussis toxin ThermoFisher Scientific PHZ117450 µg/ 500 µL in saline
Final Concentration: in vivo: 100 µg/ 100 µL
PetridishGreiner bio-one628160
ScalpelFeather disposable scalpelNo. 21 Final Concentration: in vivo:  300 ng/ 100 µL
StereomicroscopeZaissStemi508
Syringe (corneal/iris washing)BD Microlane27 G x 3/4 - Nr.20 0,4 x 19 mm
Syringe (i.p immunization)BD Microlane24 G1"-Nr 17, 055* 25 mm

  1. Gilbard, J. P., Rossi, S. R., Heyda, K. G. Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology. 96 (8), 1180-1186 (1989).
  2. Mishima, S., Maurice, D. M. The oily layer of the tear film and evaporation from the corneal surface. Experimental Eye Research. 1, 39-45 (1961).
  3. Gipson, I. K. The ocular surface: The challenge to enable and protect vision: The Friedenwald lecture. Investigative Ophthalmology and Visual Science. 48 (10), 4391-4398 (2007).
  4. Hahn, J., et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. The FASEB Journal. 33 (1), 1401-1414 (2019).
  5. Leppkes, M., et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 58, 102925 (2020).
  6. Munoz, L. E., et al. Neutrophil extracellular traps initiate gallstone formation. Immunity. 51 (3), 443-450 (2019).
  7. Schapher, M., et al. Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells. 9 (9), 2139 (2020).
  8. Mahajan, A., et al. Frontline science: Aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface. Journal of Leukocyte Biology. 105 (6), 1087-1098 (2019).
  9. DEWS Definition and Classification Subcommittee. The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop. The Ocular Surface. 5 (2), 75-92 (2007).
  10. Nichols, K. K., et al. The international workshop on meibomian gland dysfunction: Executive summary. Investigative Ophthalmology and Visual Science. 52 (4), 1922-1929 (2011).
  11. Mahajan, A., et al. Aggregated neutrophil extracellular traps occlude Meibomian glands during ocular surface inflammation. The Ocular Surface. 20, 1-12 (2021).
  12. Jester, B. E., Nien, C. J., Winkler, M., Brown, D. J., Jester, J. V. Volumetric reconstruction of the mouse meibomian gland using high-resolution nonlinear optical imaging. The Anatomical Record. 294 (2), 185-192 (2011).
  13. Nien, C. J., et al. Age-related changes in the meibomian gland. Experimental Eye Research. 89 (6), 1021-1027 (2009).
  14. Parfitt, G. J., Xie, Y., Geyfman, M., Brown, D. J., Jester, J. V. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD). Aging. 5 (11), 825-834 (2013).
  15. Lambert, R. W., Smith, R. E. Pathogenesis of blepharoconjunctivitis complicating 13-cis-retinoic acid (isotretinoin) therapy in a laboratory model. Investigative Ophthalmology and Visual Science. 29 (10), 1559-1564 (1988).
  16. Jester, J. V., Nicolaides, N., Kiss-Palvolgyi, I., Smith, R. E. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Investigative Ophthalmology and Visual Science. 30 (5), 936-945 (1989).
  17. Jester, J. V., et al. In vivo biomicroscopy and photography of meibomian glands in a rabbit model of meibomian gland dysfunction. Investigative Ophthalmology and Visual Science. 22 (5), 660-667 (1982).
  18. Lambert, R., Smith, R. E. Hyperkeratinization in a rabbit model of meibomian gland dysfunction. American Journal of Ophthalmology. 105 (6), 703-705 (1988).
  19. Knop, E., Knop, N., Millar, T., Obata, H., Sullivan, D. A. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investigative Ophthalmology and Visual Science. 52 (4), 1938-1978 (2011).
  20. Huang, W., Tourmouzis, K., Perry, H., Honkanen, R. A., Rigas, B. Animal models of dry eye disease: Useful, varied and evolving (Review). Experimental and Therapeutic Medicine. 22 (6), 1394 (2021).
  21. Reyes, N. J., et al. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Science Translational Medicine. 10 (451), (2018).
  22. Knop, E., Korb, D. R., Blackie, C. A., Knop, N. The lid margin is an underestimated structure for preservation of ocular surface health and development of dry eye disease. Developments in Ophthalmology. 45, 108-122 (2010).
  23. Knop, N., Knop, E. Meibomian glands. Part I: anatomy, embryology and histology of the Meibomian glands. Ophthalmologe. 106 (10), 872-883 (2009).
  24. Nien, C. J., et al. Effects of age and dysfunction on human meibomian glands. Archives of Ophthalmology. 129 (4), 462-469 (2011).
  25. Lio, C. T., Dhanda, S. K., Bose, T. Cluster analysis of dry eye disease models based on immune cell parameters - New insight into therapeutic perspective. Frontiers in Immunology. 11, 1930 (2020).
  26. Nguyen, D. D., Luo, L. J., Lai, J. Y. Thermogels containing sulfated hyaluronan as novel topical therapeutics for treatment of ocular surface inflammation. Materials Today Bio. 13, 100183 (2022).
  27. Lin, P. H., et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomaterialia. 141, 140-150 (2022).
  28. Yu, D., et al. Loss of beta epithelial sodium channel function in meibomian glands produces pseudohypoaldosteronism 1-like ocular disease in mice. American Journal of Pathology. 188 (1), 95-110 (2018).
  29. Mauris, J., et al. Loss of CD147 results in impaired epithelial cell differentiation and malformation of the meibomian gland. Cell Death & Disease. 6 (4), 1726 (2015).
  30. Ibrahim, O. M., et al. Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. PloS One. 9 (7), 99328 (2014).
  31. McMahon, A., Lu, H., Butovich, I. A. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Investigative Ophthalmology and Visual Science. 55 (5), 2832-2840 (2014).
  32. Miyake, H., Oda, T., Katsuta, O., Seno, M., Nakamura, M. Meibomian gland dysfunction model in hairless mice fed a special diet with limited lipid content. Investigative Ophthalmology and Visual Science. 57 (7), 3268-3275 (2016).
  33. Schaumberg, D. A., et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Investigative Ophthalmology and Visual Science. 52 (4), 1994-2005 (2011).
  34. Lee, S. Y., et al. Analysis of tear cytokines and clinical correlations in Sjogren syndrome dry eye patients and non-Sjogren syndrome dry eye patients. American Journal of Ophthalmology. 156 (2), 247-253 (2013).
  35. Nakae, S., et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 17 (3), 375-387 (2002).
  36. von Vietinghoff, S., Ley, K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. Journal of Immunology. 183 (2), 865-873 (2009).
  37. Langrish, C. L., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine. 201 (2), 233-240 (2005).
  38. Chen, Y., et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. Journal of Clinical Investigation. 116 (5), 1317-1326 (2006).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved