JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Induktion av inflammation i ögonytan och insamling av involverade vävnader

Published: August 4th, 2022

DOI:

10.3791/63890

1Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 2Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen

Inflammation i ögonytan skadar ögonytans vävnader och äventyrar ögats vitala funktioner. Det nuvarande protokollet beskriver en metod för att inducera okulär inflammation och samla komprometterade vävnader i en musmodell av Meibomian körteldysfunktion (MGD).

Okulära ytsjukdomar inkluderar en rad störningar som stör funktionerna och strukturerna i hornhinnan, konjunktiva och det tillhörande okulära ytkörtelnätverket. Meibomiska körtlar (MG) utsöndrar lipider som skapar ett täckskikt som förhindrar avdunstning av den vattenhaltiga delen av tårfilmen. Neutrofiler och extracellulära DNA-fällor fyller MG och ögonytan i en musmodell av allergisk ögonsjukdom. Aggregerade neutrofila extracellulära fällor (aggNETs) formulerar en nätliknande matris bestående av extracellulärt kromatin som täcker MG-utlopp och villkorar MG-dysfunktion. Här presenteras en metod för att inducera okulär ytinflammation och MG-dysfunktion. Förfarandena för att samla organ relaterade till ögonytan, såsom hornhinnan, konjunktiva och ögonlocken, beskrivs i detalj. Med hjälp av etablerade tekniker för bearbetning av varje organ visas också de viktigaste morfologiska och histopatologiska egenskaperna hos MG-dysfunktion. Okulära exsudater erbjuder möjlighet att bedöma det inflammatoriska tillståndet hos den okulära ytan. Dessa förfaranden möjliggör undersökning av aktuella och systemiska antiinflammatoriska ingrepp på preklinisk nivå.

Varje ögonblick fyller på den släta tårfilmen som sprids över hornhinnan. Det okulära ytepitelet underlättar fördelningen och korrekt orientering av tårfilmen på ögonytan. Muciner tillhandahålls av hornhinnan och konjunktiva epitelceller för att hjälpa till att placera den vattenhaltiga delen av tårfilmen som kommer från lacrimalkörtlarna på ögonens yta. Slutligen utsöndrar MG lipider som skapar ett täckskikt som förhindrar avdunstning av den vattenhaltiga delen av tårfilmen 1,2,3. På detta sätt skyddar de samordnade funktionerna hos alla ögonorgan den okulära ytan från invad....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Alla försök med djur utfördes enligt de institutionella riktlinjerna för djurskydd och godkändes av djurskyddskommissionen vid Friedrich-Alexander-University Erlangen-Nürnberg (FAU) (tillståndsnummer: 55.2.2-2532-2-1217). Kvinnliga C57Bl/6-möss i åldern 7-9 veckor användes för den aktuella studien. Mössen erhölls från kommersiella källor (se materialförteckningen) och förvarades under specifika patogenfria förhållanden med 12 timmars dag/natt-cykler.

1.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Detta protokoll beskriver de sekventiella stegen för att upprätta en murin modell av okulär ytinflammation. Protokollen syftar till att visa hur man applicerar terapier lokalt, får okulära exsudater och punktskatteassocierade tillbehörsorgan som friska och inflammerade ögonlock (figur 2), hornhinnan och bindhinnan. Uppmärksamhet måste ägnas när de övre ögonlocken dissekeras för isolering av konjunktiva, och det måste förvaras i 1x PBS under dissektion av hornhinnan. Detta fö.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Den oljiga utsöndringen av de meibomiska körtlarna är av stor betydelse för ett friskt öga22. Obstruktionen av dessa talgkörtlar av aggregerade neutrofila extracellulära fällor (aggNETs) som stämmer upp som parallella strängar som ligger på tarsalplattorna i båda ögonlocken kan emellertid störa tårfilmen23. Denna störning resulterar i Meibomian körtel dysfunktion (MGD)1 och accelererad tåravdunstning och villkorar skadan på ögonyt.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Detta arbete stöddes delvis av den tyska forskningsstiftelsen (DFG) 2886 PANDORA Project-No.B3; SCA 2040/1-1; MU 4240/2-1; CRC1181(C03); TRR241(B04), H2020-FETOPEN-2018-2020 Project 861878, och av Volkswagen-Stiftung (Grant 97744) till MH.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1x PBSGibco
Aluminium HydroxideImject alum Adjuvant7716140 mg/ mL
Final Concentration: in vivo: 1 mg/ 100 µL
C57Bl/6 mice, aged 7–9 weeksCharles River Laboratories 
CalciumCarl rothCN93.11 M
Final Concentration: 5 mM
Curved forcepsFST by Dumont SWITZERLAND5/45 11251-35
Fine sharp scissorFST Stainless steel, Germany15001-08
Laminar safety cabinetHerasafe
Macrophotography CameraCanonEOS6D
Macrophotography Camera (without IR filter)NikonD5300
MnaseNew England biolabsM0247S2 x 106 gel U/mL
Multi-analyte flow assay kit (Custom mouse 13-plex panel)BiolegendCLPX-200421AM-UERLAN
NaCl 0,9% (Saline)B.Braun
Ovalbumin (OVA)Endofit, Invivogen9006-59-110 mg/200 µL in saline
Pertussis toxin ThermoFisher Scientific PHZ117450 µg/ 500 µL in saline
Final Concentration: in vivo: 100 µg/ 100 µL
PetridishGreiner bio-one628160
ScalpelFeather disposable scalpelNo. 21 Final Concentration: in vivo:  300 ng/ 100 µL
StereomicroscopeZaissStemi508
Syringe (corneal/iris washing)BD Microlane27 G x 3/4 - Nr.20 0,4 x 19 mm
Syringe (i.p immunization)BD Microlane24 G1"-Nr 17, 055* 25 mm

  1. Gilbard, J. P., Rossi, S. R., Heyda, K. G. Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology. 96 (8), 1180-1186 (1989).
  2. Mishima, S., Maurice, D. M. The oily layer of the tear film and evaporation from the corneal surface. Experimental Eye Research. 1, 39-45 (1961).
  3. Gipson, I. K. The ocular surface: The challenge to enable and protect vision: The Friedenwald lecture. Investigative Ophthalmology and Visual Science. 48 (10), 4391-4398 (2007).
  4. Hahn, J., et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. The FASEB Journal. 33 (1), 1401-1414 (2019).
  5. Leppkes, M., et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 58, 102925 (2020).
  6. Munoz, L. E., et al. Neutrophil extracellular traps initiate gallstone formation. Immunity. 51 (3), 443-450 (2019).
  7. Schapher, M., et al. Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells. 9 (9), 2139 (2020).
  8. Mahajan, A., et al. Frontline science: Aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface. Journal of Leukocyte Biology. 105 (6), 1087-1098 (2019).
  9. DEWS Definition and Classification Subcommittee. The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop. The Ocular Surface. 5 (2), 75-92 (2007).
  10. Nichols, K. K., et al. The international workshop on meibomian gland dysfunction: Executive summary. Investigative Ophthalmology and Visual Science. 52 (4), 1922-1929 (2011).
  11. Mahajan, A., et al. Aggregated neutrophil extracellular traps occlude Meibomian glands during ocular surface inflammation. The Ocular Surface. 20, 1-12 (2021).
  12. Jester, B. E., Nien, C. J., Winkler, M., Brown, D. J., Jester, J. V. Volumetric reconstruction of the mouse meibomian gland using high-resolution nonlinear optical imaging. The Anatomical Record. 294 (2), 185-192 (2011).
  13. Nien, C. J., et al. Age-related changes in the meibomian gland. Experimental Eye Research. 89 (6), 1021-1027 (2009).
  14. Parfitt, G. J., Xie, Y., Geyfman, M., Brown, D. J., Jester, J. V. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD). Aging. 5 (11), 825-834 (2013).
  15. Lambert, R. W., Smith, R. E. Pathogenesis of blepharoconjunctivitis complicating 13-cis-retinoic acid (isotretinoin) therapy in a laboratory model. Investigative Ophthalmology and Visual Science. 29 (10), 1559-1564 (1988).
  16. Jester, J. V., Nicolaides, N., Kiss-Palvolgyi, I., Smith, R. E. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Investigative Ophthalmology and Visual Science. 30 (5), 936-945 (1989).
  17. Jester, J. V., et al. In vivo biomicroscopy and photography of meibomian glands in a rabbit model of meibomian gland dysfunction. Investigative Ophthalmology and Visual Science. 22 (5), 660-667 (1982).
  18. Lambert, R., Smith, R. E. Hyperkeratinization in a rabbit model of meibomian gland dysfunction. American Journal of Ophthalmology. 105 (6), 703-705 (1988).
  19. Knop, E., Knop, N., Millar, T., Obata, H., Sullivan, D. A. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investigative Ophthalmology and Visual Science. 52 (4), 1938-1978 (2011).
  20. Huang, W., Tourmouzis, K., Perry, H., Honkanen, R. A., Rigas, B. Animal models of dry eye disease: Useful, varied and evolving (Review). Experimental and Therapeutic Medicine. 22 (6), 1394 (2021).
  21. Reyes, N. J., et al. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Science Translational Medicine. 10 (451), (2018).
  22. Knop, E., Korb, D. R., Blackie, C. A., Knop, N. The lid margin is an underestimated structure for preservation of ocular surface health and development of dry eye disease. Developments in Ophthalmology. 45, 108-122 (2010).
  23. Knop, N., Knop, E. Meibomian glands. Part I: anatomy, embryology and histology of the Meibomian glands. Ophthalmologe. 106 (10), 872-883 (2009).
  24. Nien, C. J., et al. Effects of age and dysfunction on human meibomian glands. Archives of Ophthalmology. 129 (4), 462-469 (2011).
  25. Lio, C. T., Dhanda, S. K., Bose, T. Cluster analysis of dry eye disease models based on immune cell parameters - New insight into therapeutic perspective. Frontiers in Immunology. 11, 1930 (2020).
  26. Nguyen, D. D., Luo, L. J., Lai, J. Y. Thermogels containing sulfated hyaluronan as novel topical therapeutics for treatment of ocular surface inflammation. Materials Today Bio. 13, 100183 (2022).
  27. Lin, P. H., et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomaterialia. 141, 140-150 (2022).
  28. Yu, D., et al. Loss of beta epithelial sodium channel function in meibomian glands produces pseudohypoaldosteronism 1-like ocular disease in mice. American Journal of Pathology. 188 (1), 95-110 (2018).
  29. Mauris, J., et al. Loss of CD147 results in impaired epithelial cell differentiation and malformation of the meibomian gland. Cell Death & Disease. 6 (4), 1726 (2015).
  30. Ibrahim, O. M., et al. Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. PloS One. 9 (7), 99328 (2014).
  31. McMahon, A., Lu, H., Butovich, I. A. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Investigative Ophthalmology and Visual Science. 55 (5), 2832-2840 (2014).
  32. Miyake, H., Oda, T., Katsuta, O., Seno, M., Nakamura, M. Meibomian gland dysfunction model in hairless mice fed a special diet with limited lipid content. Investigative Ophthalmology and Visual Science. 57 (7), 3268-3275 (2016).
  33. Schaumberg, D. A., et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Investigative Ophthalmology and Visual Science. 52 (4), 1994-2005 (2011).
  34. Lee, S. Y., et al. Analysis of tear cytokines and clinical correlations in Sjogren syndrome dry eye patients and non-Sjogren syndrome dry eye patients. American Journal of Ophthalmology. 156 (2), 247-253 (2013).
  35. Nakae, S., et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 17 (3), 375-387 (2002).
  36. von Vietinghoff, S., Ley, K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. Journal of Immunology. 183 (2), 865-873 (2009).
  37. Langrish, C. L., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine. 201 (2), 233-240 (2005).
  38. Chen, Y., et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. Journal of Clinical Investigation. 116 (5), 1317-1326 (2006).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved