JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Bioengineering

Fabricating Highly Open Porous Microspheres (HOPMs) via Microfluidic Technology

Published: May 16th, 2022

DOI:

10.3791/63971

1Institute of Biomaterials and Tissue Engineering, Huaqiao University, 2Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, 3Affiliated Dongguan Hospital, Southern Medical University, 4Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School

Abstract

Compared to bulk scaffolds and direct injection of cells alone, the injectable modular units have garnered enormous interest in repairing malfunctioned tissues due to convenience in the packaging of cells, improved cell retention, and minimal invasiveness. Moreover, the porous conformation of these microscale carriers could enhance the medium exchange and improve the level of nutrients and oxygen supplies. The present study illustrates the convenient fabrication of poly(lactic-co-glycolic acid)-based highly open porous microspheres (PLGA-HOPMs) by the facile microfluidic technology for cell delivery applications. The resultant monodispersed PLGA-HOPMs possessed particle sizes of ~400 µm and open pores of ~50 µm with interconnecting windows. Briefly, the emulsified oil droplets (PLGA solution in dichloromethane, DCM), wrapped with the 7.5% (w/v) gelatin aqueous phase, were introduced into the 1% (w/v) continuous flowing poly(vinyl alcohol) (PVA) aqueous solution through the coaxial nozzle in the customized microfluidic setup. Subsequently, the microspheres were subjected to solvent extraction and lyophilization procedures, resulting in the production of HOPMs. Notably, various formulations (concentrations of PLGA and porogen) and processing parameters (emulsifying power, needle gauge, and flow rate of dispersed phase) play crucial roles in the qualities and characteristics of the resulting PLGA HOPMs. Moreover, these architectures might potentially encapsulate various other biochemical cues, such as growth factors, for extended drug discovery and tissue regeneration applications.

Explore More Videos

Keywords Highly Open Porous Microspheres HOPMs

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved