JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

使用MRI,组织清除和光片显微镜对完整的新生小鼠大脑进行全脑单细胞成像和分析

Published: August 1st, 2022

DOI:

10.3791/64096

1UNC Neuroscience Center, University of North Carolina, Chapel Hill, 2Department of Genetics, University of North Carolina, Chapel Hill, 3Department of Psychiatry, University of North Carolina, Chapel Hill, 4Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, 5Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, 6Department of Neurology, The University of North Carolina at Chapel Hill, 7Department of Computer Science, The University of North Carolina at Greensboro
* These authors contributed equally

该协议描述了使用iDISCO +对完整小鼠大脑进行磁共振成像,清除和免疫标记的方法,然后详细说明了使用光片显微镜成像和使用NuMorph的下游分析。

组织清除后进行光片显微镜(LSFM)能够对完整的大脑结构进行细胞分辨率成像,从而可以定量分析由遗传或环境扰动引起的结构变化。全脑成像可以更准确地定量细胞,并研究物理切片组织的常用显微镜可能遗漏的区域特异性差异。与共聚焦显微镜相比,使用光片显微镜对清除的大脑进行成像大大提高了采集速度。尽管这些图像产生非常大量的大脑结构数据,但大多数在清除组织图像中进行特征量化的计算工具仅限于计数稀疏的细胞群,而不是所有细胞核。

在这里,我们展示了NuMorph(基于核的形态测量),一组分析工具,用于量化出生后第4天(P4)小鼠大脑注释区域内的所有细胞核和核标记物,在光片显微镜上清除和成像。我们描述了磁共振成像(MRI),以在组织清除脱水步骤引起的收缩之前测量脑体积,使用iDISCO+方法清除组织,包括免疫标记,然后使用市售平台进行光片显微镜,以细胞分辨率对小鼠大脑进行成像。然后,我们使用NuMorph演示了这个图像分析管道,该管道用于校正强度差异,拼接图像图块,对齐多个通道,计数细胞核,并通过注册到公开可用的图谱来注释大脑区域。

我们使用公开可用的协议和软件设计了这种方法,允许任何具有必要显微镜和计算资源的研究人员执行这些技术。这些组织清除、成像和计算工具允许测量和量化皮层中细胞类型的三维 (3D) 组织,应广泛适用于任何野生型/敲除小鼠研究设计。

单细胞分辨率的全脑成像是神经科学中的一个重要挑战。细胞分辨率脑图像允许对脑回路进行详细分析和系统级映射,以及该回路如何被神经精神疾病的遗传或环境风险因素、发育中的胚胎中的细胞行为以及成人大脑中的神经回路破坏1,23有多种组织学方法可以对重建的3D大脑进行高分辨率图像;然而,这些技术需要昂贵的专用设备,可能与免疫标记不兼容,并且某些方法的二维(2D)性质可能导致切片过程中的组织损伤和剪切45

最近的进展提供了一种不需要组织切片的整个大脑成像的替代方法;它们涉及使用组织清除使大脑透明。在大多数组织清除方法中,通过去除脂质(因为它们是光散射的主要来源)以及在成像过程中将物体的折射率(RI)与样品浸没溶液的折射率(RI)相匹配来实现透明度。然后光可以穿过材料之间的边界而不会被散射6789

Log in or to access full content. Learn more about your institution’s access to JoVE content here

所有小鼠均按照北卡罗来纳大学教堂山分校的机构动物护理和使用委员会(IACUC)使用并得到其批准。

1.小鼠解剖和灌注

注意:使用注射器对P4和P14小鼠进行以下解剖。灌注液的体积将根据动物的年龄而变化。

  1. 灌注
    注意:多聚甲醛(PFA)是一种危险化学品。在化学通风橱中执行所有灌注步骤。
    1. 手术前,通过腹腔注射(100mg / kg?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

由于iDISCO+协议引入了明显的组织收缩,肉眼很容易注意到(图2B),我们在组织清除之前向该管道中添加了一个MRI步骤,以量化组织清除引起的收缩。工作流程从从MR图像中去除非脑组织开始(图2C)。接下来,应用刚性变换(3个平移和3个旋转角度)将MR图像与光片图像对齐(图2D)。通过这样做,我们观察到组织清除程序引起的.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

组织清除方法是测量大脑3D细胞组织的有用技术。文献中描述了许多组织清除方法,每种方法都有其优点和局限性6789用于分析组织清除图像中细胞类型的计算工具的选项相对有限。其他可用的工具已经实施到稀疏细胞群,其中分割难度较低1035或?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这项工作得到了NIH(R01MH121433,R01MH118349和R01MH120125到JLS和R01NS110791到GW)和希望基金会的支持。我们感谢显微镜服务实验室的Pablo Ariel协助样品成像。病理学和检验医学系的显微镜服务实验室得到了癌症中心核心支持拨款P30 CA016086对北卡罗来纳大学(UNC)Lineberger综合癌症中心的部分支持。神经科学显微镜核心由拨款P30 NS045892支持。本出版物中报告的研究部分得到了北卡罗来纳州生物技术中心机构支持补助金2016-IDG-1016的支持。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Bruker 9.4T/30 cm MRI ScannerBruker BiospecHorizontal Bore Animal MRI System
Dibenzyl etherSigma-Aldrich108014-1KG
Dichloromethane (DCM)Sigma-Aldrich270997-1L
Dimethyl sulfoxide (DMSO)Fisher-ScientificICN19605590
Donkey serumSigma-AldrichS30-100ML
EVO 860 4TB external SSD
Fomblin YSpeciality Fluids CompanyYL-VAC-25-6perfluoropolyether lubricant
gadolinium contrast agent (ProHance)Bracco DiagnosticsA9576
gadolinium contrast agent(ProHance)Bracco Diagnostics0270-1111-03
GeForce GTX 1080 Ti 11GB GPUEVGA08G-P4-6286-KR
GlycineSigma-AldrichG7126-500G
Heparin sodium saltSigma-AldrichH3393-10KUDissolved in H2O to 10 mg/mL
Hydrogen peroxide solution, 30%Sigma-AldrichH1009-100ML
ImSpector ProLaVision BioTecMicroscope image acquisition software
ITK Snapsegmentation software
MethanolFisher-ScientificA412SK-4
MVPLAPO 2x/0.5 NA ObjectiveOlympus
Paraformaldehyde, powder, 95% (PFA)Sigma-Aldrich30525-89-4Dissolved in 1x PBS to 4%
Phosphate Buffered Saline 10x (PBS)Corning46-013-CMDiluted to 1x in H2O
Sodium AzideSigma-AldrichS2002-100GDissolved in H2O to 10%
Sodium deoxycholateSigma-AldrichD6750-10G
Tergitol type NP-40Sigma-AldrichNP40S-100ML
TritonX-100Sigma-AldrichT8787-50ML
Tween-20Fisher-ScientificBP337 500
Ultramicroscope II Light Sheet MicroscopeLaVision BioTec
Xeon Processor E5-2690 v4IntelE5-2690
Zyla sCMOS CameraAndorComplementary metal oxide semiconductor camera
AntibodyWorking concentration
Alexa Fluor Goat 790 Anti-RabbitThermofisher ScientificA11369(1:50)
Alexa Fluor Goat 568 Anti-RatThermofisher ScientificA11077(1:200)
Rat anti-Ctip2Abcamab18465(1:400)
Rabbit anti-Brn2Cell Signaling Technology12137(1:100)
To-Pro 3 (TP3)Thermofisher ScientificT3605(1:400)

  1. Dodt, H. U., et al. Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods. 4 (4), 331-336 (2007).
  2. Hägerling, R., et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. The EMBO Journal. 32 (5), 629-644 (2013).
  3. Tomer, R., Khairy, K., Keller, P. J. Shedding light on the system: studying embryonic development with light sheet microscopy. Current Opinion in Genetics & Development. 21 (5), 558-565 (2011).
  4. Li, A., et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science. 330 (6009), 1404-1408 (2010).
  5. Stoner, R., et al. Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine. 370 (13), 1209-1219 (2014).
  6. Renier, N., et al. IDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 159 (4), 896-910 (2014).
  7. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157 (3), 726-739 (2014).
  8. Richardson, D. S., et al. Tissue clearing. Nature Reviews. Methods Primers. 1 (1), 84 (2021).
  9. Richardson, D. S., Lichtman, J. W. Clarifying tissue clearing. Cell. 162 (2), 246-257 (2015).
  10. Renier, N., et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell. 165 (7), 1789-1802 (2016).
  11. Santi, P. A. Light sheet fluorescence microscopy: a review. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 59 (2), 129-138 (2011).
  12. Girkin, J. M., Carvalho, M. T. The light-sheet microscopy revolution. Journal of Optics. 20 (5), 053002 (2018).
  13. Budday, S., et al. Mechanical properties of gray and white matter brain tissue by indentation. Journal of the Mechanical Behavior of Biomedical Materials. 46, 318-330 (2015).
  14. Johnson, G. A., et al. High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. NeuroImage. 37 (1), 82-89 (2007).
  15. Herculano-Houzel, S., Mota, B., Lent, R. Cellular scaling rules for rodent brains. Proceedings of the National Academy of Sciences of the United States of America. 103 (32), 12138-12143 (2006).
  16. Matsumoto, K., et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nature Protocols. 14 (12), 3506-3537 (2019).
  17. Fürth, D., et al. An interactive framework for whole-brain maps at cellular resolution. Nature Neuroscience. 21 (1), 139-149 (2018).
  18. Chandrashekhar, V., et al. CloudReg: automatic terabyte-scale cross-modal brain volume registration. Nature Methods. 18 (8), 845-846 (2021).
  19. Krupa, O., et al. NuMorph: Tools for cortical cellular phenotyping in tissue-cleared whole-brain images. Cell Reports. 37 (2), 109802 (2021).
  20. Petiet, A., Delatour, B., Dhenain, M. Models of neurodegenerative disease - Alzheimer's anatomical and amyloid plaque imaging. Methods in Molecular Biology. 771, 293-308 (2011).
  21. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., Smith, S. M. FSL. NeuroImage. 62, 782-790 (2012).
  22. Jenkinson, M., Bannister, P., Brady, M., Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 17 (2), 825-841 (2002).
  23. Avants, B. B., Epstein, C. L., Grossman, M., Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis. 12 (1), 26-41 (2008).
  24. . iDISCO method Available from: https://idisco.info/ (2022)
  25. Ariel, P. UltraMicroscope II - A User Guide. University of North Carolina at Chapel Hill. , (2019).
  26. . Anaconda Distribution - Anaconda documentation Available from: https://docs.anaconda.com/anaconda/ (2022)
  27. Peng, T., et al. A BaSiC tool for background and shading correction of optical microscopy images. Nature Communications. 8, 14836 (2017).
  28. Klein, S., Staring, M., Murphy, K., Viergever, M. A., Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging. 29, 196-205 (2010).
  29. Lowe, G. Sift-the scale invariant feature transform. International Journal. 2 (91-110), 2 (2004).
  30. Young, D. M., et al. Whole-brain image analysis and anatomical atlas 3D generation using MagellanMapper. Current Protocols in Neuroscience. 94 (1), 104 (2020).
  31. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  32. Velíšek, L. Under the (Light) sheet after the iDISCO. Epilepsy Currents / American Epilepsy Society. 16 (6), 405-407 (2016).
  33. Young, D. M., et al. Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain. eLife. 10, (2021).
  34. Yun, D. H., et al. Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping. bioRxiv. , (2019).
  35. Silvestri, L., et al. Universal autofocus for quantitative volumetric microscopy of whole mouse brains. Nature Methods. 18 (8), 953-958 (2021).
  36. Frasconi, P., et al. Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images. Bioinformatics. 30 (17), 587 (2014).
  37. Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society. American Mathematical Society. 7 (1), 48-50 (1956).
  38. Wang, Q., et al. The allen mouse brain common coordinate framework: A 3D reference atlas. Cell. 181, 936-953 (2020).
  39. Borland, D., et al. Segmentor: a tool for manual refinement of 3D microscopy annotations. BMC Bioinformatics. 22 (1), 260 (2021).
  40. Kumar, A., et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nature Protocols. 9 (11), 2555-2573 (2014).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved