JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

MRI、組織透明化、ライトシート顕微鏡を用いた無傷新生児マウス脳の全脳単一細胞イメージングと解析

Published: August 1st, 2022

DOI:

10.3791/64096

1UNC Neuroscience Center, University of North Carolina, Chapel Hill, 2Department of Genetics, University of North Carolina, Chapel Hill, 3Department of Psychiatry, University of North Carolina, Chapel Hill, 4Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, 5Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, 6Department of Neurology, The University of North Carolina at Chapel Hill, 7Department of Computer Science, The University of North Carolina at Greensboro
* These authors contributed equally

このプロトコルでは、iDISCO+を使用して無傷のマウス脳の磁気共鳴イメージング、クリアリング、および免疫標識を行う方法について説明し、その後、ライトシート顕微鏡を使用したイメージングの詳細な説明、およびNuMorphを使用したダウンストリーム分析について説明します。

組織透明化とそれに続くライトシート顕微鏡(LSFM)により、無傷の脳構造の細胞分解能イメージングが可能になり、遺伝的または環境的摂動によって引き起こされる構造変化の定量的分析が可能になります。全脳イメージングは、細胞のより正確な定量化と、物理的に切片化された組織の一般的に使用される顕微鏡では見逃される可能性のある領域特異的な違いの研究をもたらします。ライトシート顕微鏡を使用してクリアされた脳を画像化すると、共焦点顕微鏡と比較して取得速度が大幅に向上します。これらの画像は非常に大量の脳構造データを生成しますが、除去された組織の画像で特徴の定量化を実行するほとんどの計算ツールは、すべての核ではなく、まばらな細胞集団のカウントに限定されています。

ここでは、分析ツールのグループであるNuMorph(核ベースの形態測定)を示し、生後4日目(P4)マウスの脳のアノテーション領域内のすべての核および核マーカーを、ライトシート顕微鏡でクリアしてイメージングした後、定量化します。組織クリアの脱水ステップによって引き起こされる収縮前の脳容積を測定する磁気共鳴画像法(MRI)、免疫標識を含むiDISCO+法を使用した組織クリアリング、続いて市販のプラットフォームを使用してマウスの脳を細胞解像度で画像化するライトシート顕微鏡について説明します。次に、強度差の修正、画像タイルのステッチ、複数のチャネルの整列、核のカウント、公開されているアトラスへの登録による脳領域の注釈付けに使用されるNuMorphを使用したこの画像分析パイプラインを示します。

このアプローチは、公開されているプロトコルとソフトウェアを使用して設計され、必要な顕微鏡と計算リソースを持つすべての研究者がこれらの手法を実行できるようにしました。これらの組織クリアリング、イメージング、および計算ツールは、皮質内の細胞タイプの3次元(3D)組織の測定と定量化を可能にし、あらゆる野生型/ノックアウトマウス研究デザインに広く適用できるはずです。

単一細胞分解能での全脳イメージングは、神経科学における重要な課題です。細胞解像度の脳画像は、脳回路の詳細な分析とシステムレベルのマッピングを可能にし、その回路が神経精神障害の遺伝的または環境的危険因子、発生中の胚の細胞挙動、および成人脳の神経回路によってどのように破壊されるかを可能にします1,2,3再構築された3D脳の高解像度画像を可能にする複数の組織学的方法があります。しかしながら、これらの技術は、高価で特殊な装置を必要とし、免疫標識と互換性がない場合があり、そしていくつかの方法の2次元(2D)性質は、切片化中の組織損傷および剪断をもたらし得る45

最近の進歩は、組織切片を必要としない脳全体を画像化するための代替アプローチを提供しました。それらは、脳を透明にするために組織クリアリングを使用することを含みます。ほとんどの組織透明化法では、光散乱の主要な光源である脂質を除去し、イメージング中に目的の屈折率(RI)をサンプル浸漬溶液のRIと一致させることによって、透明性が達成されます。その後、光は散乱されることなく材料間の境界を通過することができます

Log in or to access full content. Learn more about your institution’s access to JoVE content here

すべてのマウスは、ノースカロライナ大学チャペルヒル校の施設動物管理使用委員会(IACUC)に従って使用され、承認されました。

1.マウスの解剖と灌流

注:以下の解剖は、注射器を使用してP4およびP14マウスで実施されました。灌流液の量は動物の年齢によって異なります。

  1. 灌 流
    注意: パラホルムアルデヒド(PFA)は危険な化学物?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

iDISCO+プロトコルでは、目で簡単にわかる有意な組織収縮が発生するため(図2B)、組織透明化の前にこのパイプラインにMRIステップを追加して、組織透明化によって誘発される収縮を定量化しました。ワークフローは、MR画像から非脳組織を除去することから始まります(図2C)。次に、剛体変換(3つの並進角度と3つの回転角度)を適用して、MR画像をラ?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

組織透明化法は、脳の3D細胞組織を測定するための有用な技術である。文献に記載されている多数の組織透明化方法があり、それぞれに利点と制限があります6789組織クリア画像内の細胞タイプを分析するための計算ツールの選択肢は比較的限られています。他の利用可能なツールは、セ?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

この作業は、NIH(R01MH121433、R01MH118349、およびR01MH120125からJLSおよびR01NS110791からGW)と財団の支援を受けました。サンプルイメージングを支援してくれた顕微鏡サービスラボのPablo Arielに感謝します。病理学および検査医学部門の顕微鏡サービスラボは、ノースカロライナ大学(UNC)ラインバーガー総合がんセンターへのがんセンターコアサポート助成金P30 CA016086によって部分的にサポートされています。神経科学顕微鏡コアは、助成金P30 NS045892によってサポートされています。この出版物で報告された研究は、ノースカロライナバイオテクノロジーセンターの制度的支援助成金2016-IDG-1016によって部分的にサポートされています。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Bruker 9.4T/30 cm MRI ScannerBruker BiospecHorizontal Bore Animal MRI System
Dibenzyl etherSigma-Aldrich108014-1KG
Dichloromethane (DCM)Sigma-Aldrich270997-1L
Dimethyl sulfoxide (DMSO)Fisher-ScientificICN19605590
Donkey serumSigma-AldrichS30-100ML
EVO 860 4TB external SSD
Fomblin YSpeciality Fluids CompanyYL-VAC-25-6perfluoropolyether lubricant
gadolinium contrast agent (ProHance)Bracco DiagnosticsA9576
gadolinium contrast agent(ProHance)Bracco Diagnostics0270-1111-03
GeForce GTX 1080 Ti 11GB GPUEVGA08G-P4-6286-KR
GlycineSigma-AldrichG7126-500G
Heparin sodium saltSigma-AldrichH3393-10KUDissolved in H2O to 10 mg/mL
Hydrogen peroxide solution, 30%Sigma-AldrichH1009-100ML
ImSpector ProLaVision BioTecMicroscope image acquisition software
ITK Snapsegmentation software
MethanolFisher-ScientificA412SK-4
MVPLAPO 2x/0.5 NA ObjectiveOlympus
Paraformaldehyde, powder, 95% (PFA)Sigma-Aldrich30525-89-4Dissolved in 1x PBS to 4%
Phosphate Buffered Saline 10x (PBS)Corning46-013-CMDiluted to 1x in H2O
Sodium AzideSigma-AldrichS2002-100GDissolved in H2O to 10%
Sodium deoxycholateSigma-AldrichD6750-10G
Tergitol type NP-40Sigma-AldrichNP40S-100ML
TritonX-100Sigma-AldrichT8787-50ML
Tween-20Fisher-ScientificBP337 500
Ultramicroscope II Light Sheet MicroscopeLaVision BioTec
Xeon Processor E5-2690 v4IntelE5-2690
Zyla sCMOS CameraAndorComplementary metal oxide semiconductor camera
AntibodyWorking concentration
Alexa Fluor Goat 790 Anti-RabbitThermofisher ScientificA11369(1:50)
Alexa Fluor Goat 568 Anti-RatThermofisher ScientificA11077(1:200)
Rat anti-Ctip2Abcamab18465(1:400)
Rabbit anti-Brn2Cell Signaling Technology12137(1:100)
To-Pro 3 (TP3)Thermofisher ScientificT3605(1:400)

  1. Dodt, H. U., et al. Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods. 4 (4), 331-336 (2007).
  2. Hägerling, R., et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. The EMBO Journal. 32 (5), 629-644 (2013).
  3. Tomer, R., Khairy, K., Keller, P. J. Shedding light on the system: studying embryonic development with light sheet microscopy. Current Opinion in Genetics & Development. 21 (5), 558-565 (2011).
  4. Li, A., et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science. 330 (6009), 1404-1408 (2010).
  5. Stoner, R., et al. Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine. 370 (13), 1209-1219 (2014).
  6. Renier, N., et al. IDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 159 (4), 896-910 (2014).
  7. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157 (3), 726-739 (2014).
  8. Richardson, D. S., et al. Tissue clearing. Nature Reviews. Methods Primers. 1 (1), 84 (2021).
  9. Richardson, D. S., Lichtman, J. W. Clarifying tissue clearing. Cell. 162 (2), 246-257 (2015).
  10. Renier, N., et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell. 165 (7), 1789-1802 (2016).
  11. Santi, P. A. Light sheet fluorescence microscopy: a review. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 59 (2), 129-138 (2011).
  12. Girkin, J. M., Carvalho, M. T. The light-sheet microscopy revolution. Journal of Optics. 20 (5), 053002 (2018).
  13. Budday, S., et al. Mechanical properties of gray and white matter brain tissue by indentation. Journal of the Mechanical Behavior of Biomedical Materials. 46, 318-330 (2015).
  14. Johnson, G. A., et al. High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. NeuroImage. 37 (1), 82-89 (2007).
  15. Herculano-Houzel, S., Mota, B., Lent, R. Cellular scaling rules for rodent brains. Proceedings of the National Academy of Sciences of the United States of America. 103 (32), 12138-12143 (2006).
  16. Matsumoto, K., et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nature Protocols. 14 (12), 3506-3537 (2019).
  17. Fürth, D., et al. An interactive framework for whole-brain maps at cellular resolution. Nature Neuroscience. 21 (1), 139-149 (2018).
  18. Chandrashekhar, V., et al. CloudReg: automatic terabyte-scale cross-modal brain volume registration. Nature Methods. 18 (8), 845-846 (2021).
  19. Krupa, O., et al. NuMorph: Tools for cortical cellular phenotyping in tissue-cleared whole-brain images. Cell Reports. 37 (2), 109802 (2021).
  20. Petiet, A., Delatour, B., Dhenain, M. Models of neurodegenerative disease - Alzheimer's anatomical and amyloid plaque imaging. Methods in Molecular Biology. 771, 293-308 (2011).
  21. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., Smith, S. M. FSL. NeuroImage. 62, 782-790 (2012).
  22. Jenkinson, M., Bannister, P., Brady, M., Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 17 (2), 825-841 (2002).
  23. Avants, B. B., Epstein, C. L., Grossman, M., Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis. 12 (1), 26-41 (2008).
  24. . iDISCO method Available from: https://idisco.info/ (2022)
  25. Ariel, P. UltraMicroscope II - A User Guide. University of North Carolina at Chapel Hill. , (2019).
  26. . Anaconda Distribution - Anaconda documentation Available from: https://docs.anaconda.com/anaconda/ (2022)
  27. Peng, T., et al. A BaSiC tool for background and shading correction of optical microscopy images. Nature Communications. 8, 14836 (2017).
  28. Klein, S., Staring, M., Murphy, K., Viergever, M. A., Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging. 29, 196-205 (2010).
  29. Lowe, G. Sift-the scale invariant feature transform. International Journal. 2 (91-110), 2 (2004).
  30. Young, D. M., et al. Whole-brain image analysis and anatomical atlas 3D generation using MagellanMapper. Current Protocols in Neuroscience. 94 (1), 104 (2020).
  31. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  32. Velíšek, L. Under the (Light) sheet after the iDISCO. Epilepsy Currents / American Epilepsy Society. 16 (6), 405-407 (2016).
  33. Young, D. M., et al. Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain. eLife. 10, (2021).
  34. Yun, D. H., et al. Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping. bioRxiv. , (2019).
  35. Silvestri, L., et al. Universal autofocus for quantitative volumetric microscopy of whole mouse brains. Nature Methods. 18 (8), 953-958 (2021).
  36. Frasconi, P., et al. Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images. Bioinformatics. 30 (17), 587 (2014).
  37. Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society. American Mathematical Society. 7 (1), 48-50 (1956).
  38. Wang, Q., et al. The allen mouse brain common coordinate framework: A 3D reference atlas. Cell. 181, 936-953 (2020).
  39. Borland, D., et al. Segmentor: a tool for manual refinement of 3D microscopy annotations. BMC Bioinformatics. 22 (1), 260 (2021).
  40. Kumar, A., et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nature Protocols. 9 (11), 2555-2573 (2014).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved