JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Identificación de caspasas y sus motivos que escinden proteínas durante la infección por el virus de la influenza A

Published: July 21st, 2022

DOI:

10.3791/64189

1Department of Microbiology and Immunology, University of Otago

La infección por el virus de la influenza A (IAV) activa las caspasas que escinden las proteínas del huésped y virales, que, a su vez, tienen funciones pro y antivirales. Mediante el empleo de inhibidores, interferencia de ARN, mutagénesis dirigida al sitio y técnicas de Western blotting y RT-qPCR, se identificaron caspasas en células de mamíferos infectadas que escinden cortactina del huésped e histonas desacetilasas.

Las caspasas, una familia de proteasas de cisteína, orquestan la muerte celular programada en respuesta a diversos estímulos, incluidas las infecciones microbianas. Inicialmente descrito como que ocurre por apoptosis, ahora se sabe que la muerte celular programada abarca tres vías interconectadas: piroptosis, apoptosis y necroptosis, acuñadas juntas como un proceso, PANoptosis. La infección por el virus Influence A (IAV) induce PANoptosis en células de mamíferos al inducir la activación de diferentes caspasas, que, a su vez, escinden varias proteínas del huésped y virales, lo que lleva a procesos como la activación de la respuesta antiviral innata del huésped o la degradación de proteínas antagónicas del huésped. En este sentido, se ha descubierto escisión mediada por caspasa 3 de la cortactina del huésped, la histona desacetilasa 4 (HDAC4) y la histona desacetilasa 6 (HDAC6) en células epiteliales animales y humanas en respuesta a la infección por IAV. Para demostrarlo, se emplearon inhibidores, interferencia de ARN y mutagénesis dirigida al sitio y, posteriormente, se midió la escisión o resistencia a la escisión y la recuperación de los polipéptidos cortactina, HDAC4 y HDAC6 mediante western blotting. Estos métodos, junto con RT-qPCR, forman una estrategia simple pero efectiva para identificar el huésped, así como las proteínas virales que experimentan escisión mediada por caspasa durante una infección de IAV u otros virus humanos y animales. En el presente protocolo se elaboran los resultados representativos de esta estrategia, y también se examinan las formas de hacerla más eficaz.

El virus de la influenza A (IAV) es el miembro prototípico de la familia Orthomyxoviridae y se sabe que causa epidemias globales y pandemias impredecibles. IAV causa enfermedad respiratoria humana, gripe, comúnmente conocida como "gripe". La gripe es una enfermedad aguda que resulta en la inducción de respuestas inmunes innatas pro y antiinflamatorias del huésped y la muerte de las células epiteliales en el tracto respiratorio humano. Ambos procesos están gobernados por un fenómeno llamado muerte celular programada1. La señalización para la muerte celular programada se induce tan pronto como varios receptores de reconocimiento de patóg....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Se obtuvieron aprobaciones regulatorias del Comité Institucional de Seguridad Biológica de la Universidad de Otago para trabajar con el IAV y las células de mamíferos. Para el presente estudio se utilizó el riñón canino Madin-Darby (MDCK) o células epiteliales a549 alveolares de pulmón humano y subtipos IAV H1N1. El IAV se cultivó en huevos de gallina, como se describe en otra parte17. Se utilizaron condiciones estériles y asépticas para trabajar con células de mamíferos, y se utiliz.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tratamiento con inhibidor de caspasa 3
Se ha descubierto que los polipéptidos cortactina del huésped, HDAC4 y HDAC6 sufren degradación en respuesta a la infección por IAV tanto en células caninas (MDCK) como humanas (A549, NHBE) 7,8,9. Mediante el uso de los enfoques anteriores, se descubrió que las caspasas del huésped inducidas por IAV, particularmente la caspasa 3, causan su .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Se establece que los virus adaptan los factores y vías del huésped para su beneficio. A su vez, las células huésped se resisten a eso empleando varias estrategias. Una de esas estrategias es la PANoptosis, que las células huésped utilizan como estrategia antiviral contra las infecciones por virus. Sin embargo, virus como IAV han desarrollado sus propias estrategias para contrarrestar la PANoptosis y explotarla en su beneficio 1,3,6.<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

El autor reconoce a Jennifer Tipper, Bilan Li, Jesse vanWestrienen, Kevin Harrod, Da-Yuan Chen, Farjana Ahmed, Sonya Mros, Kenneth Yamada, Richard Webby, BEI Resources (NIAID), el Health Research Council of New Zealand, el Maurice and Phyllis Paykel Trust (Nueva Zelanda), el H.S. and J.C. Anderson Trust (Dunedin), y el Departamento de Microbiología e Inmunología y la Facultad de Ciencias Biomédicas (Universidad de Otago).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
A549 cellsATCCCRM-CCL-185Human, epithelial, lung
Ammonium chlorideSigma-AldrichA9434
Caspase 3 InhibitorSigma-Aldrich264156-MAlso known as 'InSolution Caspase-3 Inhibitor II - Calbiochem'
cOmplete, Mini Protease Inhibitor CocktailRoche11836153001
Goat anti-NP antibodyGift from Richard Webby (St Jude Children’s Research Hospital, Memphis, USA) to MH
Lipofectamine 2000 Transfection ReagentThermoFisher Scientific31985062
Lipofectamine RNAiMAX Transfection ReagentThermoFisher Scientific13778150
MDCK cellsATCCCCL-34Dog, epithelial, kidney
MG132Sigma-AldrichM7449
Minimum Essential Medium (MEM)ThermoFisher Scientific11095080Add L-glutamine, antibiotics or other supplements as required
MISSION siRNA Universal Negative Control #1Sigma-AldrichSIC001
Odyssey Fc imager with Image Studio Lite software 5.2 LI-COROdyssey Fc has been replaced with Odyssey XF and Image Studio Lite software has been replaced with Empiria Studio software.
Pierce BCA Protein Assay KitThermoFisher Scientific23225
Plasmid expressing human cortactin-GFP fusion Addgene50728Gift from Kenneth Yamada to Addgene
Pre-designed small interferring RNA (siRNA) to caspase 3Sigma-AldrichNM_004346siRNA ID: SASI_Hs01_00139105
Pre-designed small interferring RNA to caspase 6Sigma-AldrichNM_001226siRNA ID: SASI_Hs01_00019062
Pre-designed small interferring RNA to caspase 7Sigma-AldrichNM_001227siRNA ID: SASI_Hs01_00128361
Pre-designed SYBR Green RT-qPCR Primer pairsSigma-AldrichKSPQ12012Primer Pair IDs: H_CASP3_1; H_CASP6_1; H_CASP7_1
Protran Premium nitrocellulose membraneCytiva (Fomerly GE Healthcare)10600003
Rabbit anti-actin antibodyAbcamab8227
Rabbit anti-cortactin antibodyCell Signaling3502
Rabbit anti-GFP antibodyTakara632592
SeeBlue Pre-stained Protein StandardThermoFisher ScientificLC5625
Transfection medium, Opti-MEMThermoFisher Scientific11668019
Tris-HCl, NaCl, SDS, Sodium Deoxycholate, Triton X-100Merck
Trypsin, TPCK-TreatedSigma-Aldrich4370285

  1. Place, D. E., Lee, S., Kanneganti, T. -. D. PANoptosis in microbial infection. Current Opinion in Microbiology. 59, 42-49 (2021).
  2. Zheng, M., Kanneganti, T. -. D. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunological Reviews. 297 (1), 26-38 (2020).
  3. Connolly, P. F., Fearnhead, H. O. Viral hijacking of host caspases: An emerging category of pathogen-host interactions. Cell Death & Differentiation. 24 (8), 1401-1410 (2017).
  4. Julien, O., Wells, J. A. Caspases and their substrates. Cell Death & Differentiation. 24 (8), 1380-1389 (2017).
  5. Balachandran, S., Rall, G. F., Gack, M. U. Benefits and perils of necroptosis in influenza virus infection. Journal of Virology. 94 (9), 01101-01119 (2020).
  6. Ampomah, P. B., Lim, L. H. K. Influenza A virus-induced apoptosis and virus propagation. Apoptosis. 25 (1-2), 1-11 (2020).
  7. Chen, D. Y., Husain, M. Caspase-mediated degradation of host cortactin that promotes influenza A virus infection in epithelial cells. Virology. 497, 146-156 (2016).
  8. Galvin, H. D., Husain, M. Influenza A virus-induced host caspase and viral PA-X antagonize the antiviral host factor, histone deacetylase 4. Journal of Biological Chemistry. 294 (52), 20207-20221 (2019).
  9. Husain, M., Harrod, K. S. Influenza A virus-induced caspase-3 cleaves the histone deacetylase 6 in infected epithelial cells. FEBS Letters. 583 (15), 2517-2520 (2009).
  10. Husain, M., Cheung, C. Y. Histone deacetylase 6 inhibits influenza A virus release by downregulating the trafficking of viral components to the plasma membrane via its substrate, acetylated microtubules. Journal of Virology. 88 (19), 11229-11239 (2014).
  11. Chen, D. Y., Husain, M. Caspase-mediated cleavage of human cortactin during influenza A virus infection occurs in its actin-binding domains and is associated with released virus titres. Viruses. 12 (1), 87 (2020).
  12. Zhirnov, O. P., Syrtzev, V. V. Influenza virus pathogenicity is determined by caspase cleavage motifs located in the viral proteins. Journal of Molecular and Genetic Medicine. 3 (1), 124-132 (2009).
  13. Zhirnov, O. P., Klenk, H. -. D. Alterations in caspase cleavage motifs of NP and M2 proteins attenuate virulence of a highly pathogenic avian influenza virus. Virology. 394 (1), 57-63 (2009).
  14. Zhirnov, O. P., Konakova, T. E., Garten, W., Klenk, H. Caspase-dependent N-terminal cleavage of influenza virus nucleocapsid protein in infected cells. Journal of Virology. 73 (12), 10158-10163 (1999).
  15. Robinson, B. A., Van Winkle, J. A., McCune, B. T., Peters, A. M., Nice, T. J. Caspase-mediated cleavage of murine norovirus NS1/2 potentiates apoptosis and is required for persistent infection of intestinal epithelial cells. PLOS Pathogens. 15 (7), 1007940 (2019).
  16. Richard, A., Tulasne, D. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis. Cell Death & Disease. 3 (3), 277 (2012).
  17. Brauer, R., Chen, P. Influenza virus propagation in embryonated chicken eggs. Journal of Visualized Experiments. (97), e52421 (2015).
  18. Lüthi, A. U., Martin, S. J. The CASBAH: A searchable database of caspase substrates. Cell Death & Differentiation. 14 (4), 641-650 (2007).
  19. Kumar, S., van Raam, B. J., Salvesen, G. S., Cieplak, P. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates. PLoS One. 9 (10), 110539 (2014).
  20. Igarashi, Y., et al. CutDB: A proteolytic event database. Nucleic Acids Research. 35 (Database issue). 35, 546-549 (2007).
  21. Crawford, E. D., et al. The DegraBase: A database of proteolysis in healthy and apoptotic human cells. Molecular & Cellular Proteomics. 12 (3), 813-824 (2013).
  22. Rawlings, N. D., Tolle, D. P., Barrett, A. J. MEROPS: The peptidase database. Nucleic Acids Research. 32, 160-164 (2004).
  23. Lange, P. F., Overall, C. M. TopFIND, a knowledgebase linking protein termini with function. Nature Methods. 8 (9), 703-704 (2011).
  24. Fortelny, N., Yang, S., Pavlidis, P., Lange, P. F., Overall, C. M. Proteome TopFIND 3.0 with TopFINDer and PathFINDer: Database and analysis tools for the association of protein termini to pre- and post-translational events. Nucleic Acids Research. 43, 290-297 (2015).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved