Sign In

In This Article

  • Abstract
  • Reprints and Permissions

Abstract

The CRISPR/Cas9 system has made it possible to develop genetically modified mice by direct genome editing using fertilized zygotes. However, although the efficiency in developing gene-knockout mice by inducing small indel mutation would be sufficient enough, the efficiency of embryo genome editing for making large-size DNA knock-in (KI) is still low. Therefore, in contrast to the direct KI method in embryos, gene targeting using embryonic stem cells (ESCs) followed by embryo injection to develop chimera mice still has several advantages (e.g., high throughput targeting in vitro, multi-allele manipulation, and Cre and flox gene manipulation can be carried out in a short period). In addition, strains with difficult-to-handle embryos in vitro, such as BALB/c, can also be used for ESC targeting. This protocol describes the optimized method for large-size DNA (several kb) KI in ESCs by applying CRISPR/Cas9-mediated genome editing followed by chimera mice production to develop gene-manipulated mouse models.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords CRISPR Cas9Gene TargetingEmbryonic Stem CellsGene manipulated Mouse ModelsGene FunctionsIn VivoDrug SelectionMouse Embryonic FibroblastESCMEFElectroporationCas9 RNP DNA

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved