Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presented here is a protocol to use controlled hyperthermia, generated by magnetic resonance-guided high intensity focused ultrasound, to trigger drug release from temperature-sensitive liposomes in a rhabdomyosarcoma mouse model.

Abstract

Magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is an established method for producing localized hyperthermia. Given the real-time imaging and acoustic energy modulation, this modality enables precise temperature control within a defined area. Many thermal applications are being explored with this noninvasive, nonionizing technology, such as hyperthermia generation, to release drugs from thermosensitive liposomal carriers. These drugs can include chemotherapies such as doxorubicin, for which targeted release is desired due to the dose-limiting systemic side effects, namely cardiotoxicity. Doxorubicin is a mainstay for treating a variety of malignant tumors and is commonly used in relapsed or recurrent rhabdomyosarcoma (RMS). RMS is the most common solid soft tissue extracranial tumor in children and young adults. Despite aggressive, multimodal therapy, RMS survival rates have remained the same for the past 30 years. To explore a solution for addressing this unmet need, an experimental protocol was developed to evaluate the release of thermosensitive liposomal doxorubicin (TLD) in an immunocompetent, syngeneic RMS mouse model using MRgHIFU as the source of hyperthermia for drug release.

Introduction

Rhabdomyosarcoma (RMS) is a skeletal muscle tumor that most commonly occurs in children and young adults1. Localized disease is often treated with multimodal treatment, including chemotherapy, ionizing radiation, and surgery. The use of multi-drug chemotherapy regimens is more prevalent in pediatric patients, with improved outcomes compared to their adult counterparts2; however, despite ongoing research efforts, the 5-year survival rate remains at around 30% in the most aggressive form of the disease3,4. The chemotherapy standard of care is a multidrug regimen th....

Protocol

Research was performed in compliance with the animal care committees with approved animal use protocols under a supervising veterinarian at The Centre for Phenogenomics (TCP) and University Health Network (UHN) Animal Resource Centre (ARC) animal research facilities. All procedures, excluding the MRgHIFU, involving the animals were done in a biological safety cabinet (BSC) to minimize animal exposure to external air or susceptible infection.

1. Mouse breeding

Representative Results

Using the MRgHIFU-generated hyperthermia protocol, the tumors in the hind limb were able to be consistently heated to the desired set temperature for the duration of the treatment (Figure 4 shows a representative treatment, 10 or 20 min, n = 65). To consider a treatment to be successful, the ROI had to be maintained above 39 °C for the entirety of the treatment, with <6 °C variation throughout the treatment and without heating of off-target tissue. Additionally, the core temper.......

Discussion

The protocol developed herein was used to target hind limb tumors using MRgHIFU for mild HT treatment and release encapsulated drugs from liposomes in vivo. Several critical steps were encountered in this protocol during the pilot study, and optimizing these critical steps accounted for the improved treatment success over the pilot study. First is the complete removal of the hair on the area to be sonicated. Any gas trapping within the fur prevents the ultrasound beam from passing and blocks ultrasound passage i.......

Acknowledgements

We would like to acknowledge our sources of funding for this project and the personnel involved including: C17 Research Grant, Canada Graduate Scholarship, Ontario Student Opportunity Trust Fund, and James J. Hammond Fund.

....

Materials

NameCompanyCatalog NumberComments
1.5mL Eppendorf tubesEppendorf22363204
1kb plus DNA LadderFroggabioDM015-R500
2x HS-Red Taq (PCR mix)Wisent801-200-MM
7 Tesla MRI BioSpecBrukerT18493170/30 BioSpec, Bruker, Ettlingen, Germany
C1000 Thermal cyclerBiorad1851148
ClippersWhal Peanut8655
Compressed ultrasound gelAquaflexHF54-004
Convection heating device3M Bair Hugger70200791401
Depiliatory creamNair61700222611Shopper's Drug Mart
DMEMWisent219-065-LK
DNeasy extraction kitQiagen 69504
DPBSWisent311-420-CL
Drug injection systemHarvard ApparatusPY2 70-2131PHD 22/2200 MRI compatible Syringe Pump
Eye lubricantOptixcare50-218-8442
F10 MediaWisent318-050-CL
FBSWisent081-105
FroggaroseFroggaBioA87
Gel Molecular ImagerBioRadGelDocXR
GlutamaxWisent609-065-EL
Heat LampMorganville ScientificHL0100 Similar to this product
Intravascular Polyethylene tubing (0.015" ID x 0.043" OD, 20G)SAI infusionPE-20-100
IsofluraneSigma792632
M25FV24C Cell lineGladdy LabN/A
Microliter SyringeHamilton01-01-7648
Molecular Imager Gel Doc XRBiorad170-8170
Mouse holderThe 3D printing material used was ABS-M30i, and it was printed on FDM Fortus 380mc machine N/ADimensions: length = 43 mm, outer radius = 15 mm, inner width (where the mouse would sit) = 20.7 mm. 
MyRun MachineCosmo Bio Co LtdCBJ-IMR-001-EX
Nanodrop 8000 SpectrophotometerThermo ScientificND-8000-GL
p53 primersEurofinsN/ACustom Primers
PCR tubesDiamedSSI3131-06
Penicillin/StreptomycinWisent450-200-EL
Proteus software Pichardo labN/A
Respiratory monitoring systemSAIIModel 1030MR-compatible monitoring and gating system for small animals
Small Bore HIFU device, LabFUSImage Guided TherapyN/ALabFUS, Image Guided Therapy, Pessac, France Number of elements 8
frequency 2.5 MHz
diameter  25 mm
radius of curvature 20 mm
Focal spot size 0.6 mm x 0.6 mm x 2.0 mm

Motor: axes 2

Generator:
Number of channels 8
Maximum electrical power/channel Wel 4
Maximum electrical power Wel 32
Bandwidth 0.5 - 5 MHz
Control per channel: Freq., Phase and. amplitude
Measurements per channel: Vrms, Irms, cos(theta)
Duty Cycle at 100% power % 100% for 1 min.

Transducer:
Number of elements 8
frequency  2.5 MHz
diameter 25 mm
radius of curvature 20 mm
Focal spot size  0.6 mm x 0.6 mm x 2.0 mm
SYBR SafeThermoFisher ScientificS33102
TAEWisent811-540-FL
Tail vein catheter (27G 0.5" )Terumo Medical Corp15253
Thermal probesRugged MonitoringL201-08
Trypan blueThermoFisher Scientific15250061
TrypsinWisent325-052-EL
Ultrasound GelAquasonicPLI 01-08

References

  1. Skapek, S. X., et al. Rhabdomyosarcoma. Nature Reviews Disease Primers. 5 (1), (2019).
  2. Ferrari, A., et al. Impact of rhabdomyosarcoma treatment modalities by age in a population-based setting. Journal of Adolescent a....

Explore More Articles

Magnetic ResonanceHigh Intensity Focused UltrasoundHyperthermiaRhabdomyosarcomaPreclinical TestingTumor TargetedThermosensitive DrugsSarcomaLocalized HypothermiaImmune SystemMRIHIFUMouse ModelTumor GrowthImagingTransducerDeionized WaterAnesthesia

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved