JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Cancer Research

Establishing 3-Dimensional Spheroids from Patient-Derived Tumor Samples and Evaluating their Sensitivity to Drugs

Published: December 16th, 2022

DOI:

10.3791/64564

1Felsenstein Medical Research Center, 2Davidoff Center, Rabin Medical Center, 3BioInsight Ltd., 4Sackler Faculty of Medicine, Tel Aviv University

Abstract

Despite remarkable advances in understanding tumor biology, the vast majority of oncology drug candidates entering clinical trials fail, often due to a lack of clinical efficacy. This high failure rate illuminates the inability of the current preclinical models to predict clinical efficacy, mainly due to their inadequacy in reflecting tumor heterogeneity and the tumor microenvironment. These limitations can be addressed with 3-dimensional (3D) culture models (spheroids) established from human tumor samples derived from individual patients. These 3D cultures represent real-world biology better than established cell lines that do not reflect tumor heterogeneity. Furthermore, 3D cultures are better than 2-dimensional (2D) culture models (monolayer structures) since they replicate elements of the tumor environment, such as hypoxia, necrosis, and cell adhesion, and preserve the natural cell shape and growth. In the present study, a method was developed for preparing primary cultures of cancer cells from individual patients that are 3D and grow in multicellular spheroids. The cells can be derived directly from patient tumors or patient-derived xenografts. The method is widely applicable to solid tumors (e.g., colon, breast, and lung) and is also cost-effective, as it can be performed in its entirety in a typical cancer research/cell biology lab without relying on specialized equipment. Herein, a protocol is presented for generating 3D tumor culture models (multicellular spheroids) from primary cancer cells and evaluating their sensitivity to drugs using two complementary approaches: a cell-viability assay (MTT) and microscopic examinations. These multicellular spheroids can be used to assess potential drug candidates, identify potential biomarkers or therapeutic targets, and investigate the mechanisms of response and resistance.

Explore More Videos

Keywords 3D Tumor Model

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved