A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Cancer Research
Despite remarkable advances in understanding tumor biology, the vast majority of oncology drug candidates entering clinical trials fail, often due to a lack of clinical efficacy. This high failure rate illuminates the inability of the current preclinical models to predict clinical efficacy, mainly due to their inadequacy in reflecting tumor heterogeneity and the tumor microenvironment. These limitations can be addressed with 3-dimensional (3D) culture models (spheroids) established from human tumor samples derived from individual patients. These 3D cultures represent real-world biology better than established cell lines that do not reflect tumor heterogeneity. Furthermore, 3D cultures are better than 2-dimensional (2D) culture models (monolayer structures) since they replicate elements of the tumor environment, such as hypoxia, necrosis, and cell adhesion, and preserve the natural cell shape and growth. In the present study, a method was developed for preparing primary cultures of cancer cells from individual patients that are 3D and grow in multicellular spheroids. The cells can be derived directly from patient tumors or patient-derived xenografts. The method is widely applicable to solid tumors (e.g., colon, breast, and lung) and is also cost-effective, as it can be performed in its entirety in a typical cancer research/cell biology lab without relying on specialized equipment. Herein, a protocol is presented for generating 3D tumor culture models (multicellular spheroids) from primary cancer cells and evaluating their sensitivity to drugs using two complementary approaches: a cell-viability assay (MTT) and microscopic examinations. These multicellular spheroids can be used to assess potential drug candidates, identify potential biomarkers or therapeutic targets, and investigate the mechanisms of response and resistance.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved