JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Cancer Research

来自切除人肿瘤标本的 离体 器官型腹膜假粘液瘤肿瘤切片的培养和成像

Published: December 9th, 2022

DOI:

10.3791/64620

1Department of Surgery, University of California

我们描述了一种用于人类癌症的生产,培养和可视化的方案,这些癌症已经转移到腹膜表面。使用振动切片机切割切除肿瘤标本,并在可渗透的插入物上培养以增加氧合和活力,然后使用共聚焦显微镜和流式细胞术进行成像和下游分析。

腹膜假黏液瘤 (PMP) 是一种罕见的疾病,由粘液原发性肿瘤的播散和分泌粘蛋白的肿瘤细胞在腹膜腔中积累引起。PMP可由各种类型的癌症引起,包括阑尾癌,卵巢癌和结直肠癌,尽管阑尾肿瘤是迄今为止最常见的病因。PMP由于其(1)罕见性,(2)有限的小鼠模型和(3)粘液,无细胞组织学,研究具有挑战性。这里介绍的方法允许在肿瘤微环境(TME)保持完整的制剂中使用患者来源的 离体 器官型切片对这些肿瘤类型进行实时可视化和询问。在该协议中,我们首先描述使用振动切片机制备肿瘤切片并随后进行长期培养。其次,我们描述了肿瘤切片的共聚焦成像以及如何监测活力、钙成像和局部增殖的功能读数。简而言之,切片装有成像染料,并放置在可以安装在共聚焦显微镜上的成像室中。延时视频和共聚焦图像用于评估初始活力和细胞功能。该程序还探索TME中的平移细胞运动和旁分泌信号传导相互作用。最后,我们描述了用于流式细胞术分析的肿瘤切片的解离方案。定量流式细胞术分析可用于从实验室到床边的治疗测试,以确定免疫景观和上皮细胞含量内发生的变化。

腹膜假黏液瘤 (PMP) 是一种罕见综合征,发病率为每年每百万人 1 例1。大多数PMP病例是由阑尾肿瘤转移引起的。鉴于小鼠没有类似人类的阑尾,对这种类型的癌症进行建模仍然极具挑战性。虽然原发性疾病通常可以通过手术切除治愈,但转移性疾病的治疗选择有限。因此,开发这种新型器官型切片模型的基本原理是研究PMP的病理生物学。迄今为止,还没有可以永久培养的阑尾类器官模型;然而,最近的模型被证明可用于治疗剂和免疫疗法的药理学测试2。因此,我们采用了一种器官型切片培养系统,该系统已用于其他类型的人类癌症,例如脑癌、乳腺癌、胰腺癌、肺癌、卵巢癌等3,456

除阑尾肿瘤外,PMP偶尔还由其他肿瘤类型引起,包括卵巢癌7,在极少数情况下,导管内状粘液肿瘤8 和结肠癌9。此外,这些肿瘤往往生长缓慢,在患者来源的异种移植(PDX)模型中移植率低10....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

所有组织的去识别和采集均在加州大学圣地亚哥分校根据IRB批准的协议进行。

1. 制备用于组织处理和培养的人PMP组织

  1. 肿瘤组织的运输和显微切割
    1. 准备运输和培养基:完成 10% (v/v) Dulbecco 改良鹰培养基 (DMEM)、10% FBS、2 mM L-谷氨酰胺、1% 青霉素/链霉素(笔链球菌)。
    2. 组织到达后,根据机构IRB批准的方案,将PMP肿瘤组织转移到35个直径为6厘.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

简而言之,来自PMP的人肿瘤标本是根据IRB批准的方案获得的。制备组织,显微解剖并在琼脂糖模具中固化,以使用振动切片机切割(图1A;视频 1)。切割后,将组织切片放置在可渗透的插入膜上并培养(图1B),可用于原位成像测定,以及使用流式细胞术,共聚焦成像分析和细胞毒性测定进行细胞和功能检查。人PMP组织切片培养和处?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

本手稿描述了一种可用于培养、询问和分析人腹膜假黏液瘤 (PMP) 肿瘤标本的技术。我们利用了许多下游功能检测来询问肿瘤免疫微环境和从工作台到床边测试的平台。

虽然该方法在我们手中非常有效,但使用振动切片机切割肿瘤标本需要一些练习。也就是说,我们遇到了由于高度粘液的样品以及不正确地显微解剖以去除不可切割支架(腹壁,腹水,各种ECM蛋白)而导致的.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

作者要感谢摩尔斯癌症中心成像核心设施的Kersi Pestonjamasp对显微镜的帮助UCSD专业癌症支持中心P30资助2P30CA023100。这项工作还得到了JoVE出版补助金(JRW)的支持,以及伊丽莎白和Ad Creemers遗产,Euske家庭基金会,胃肠道癌症研究基金和腹膜转移研究基金(AML)的慷慨捐赠。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1 M CaCl2 solutionSigma21115
1 M HEPES solutionSigmaH0887
1 M MgCl2 solution SigmaM1028
100 micron filterThermoFisher22-363-549
22 x 40 glass coverslipsDaiggerbrandG15972H
3 M KCl solutionSigma60135
5 M NaCl solutionSigmaS5150
ATPγS Tocris 4080
Bovine Serum AlbuminSigmaA2153
Calcein-AM InvitrogenL3224
CD11b Biolegend101228
CD206 Biolegend321140
CD3Biolegend555333
CD4 Biolegend357410
CD45 Biolegend304006
CD8 Biolegend344721
CellTiter-Glo PromegaG9681
DMEM Thermo Fisher11965084
DPBS Sigma AldrichD8537
FBS, heat inactivatedThermoFisher16140071
Fc-block BD Biosciences564220
Fluo-4Thermo FisherF14201
Gentle Collagenase/Hyaluronidase Stem Cell7912
Imaging ChamberWarner InstrumentsRC-26
Imaging Chamber PlatformWarner InstrumentsPH-1
LD-Blue BiolegendL23105
L-Glutamine 200 mMThermoFisher25030081
LIVE/DEAD imaging dyesThermofisherR37601
Nikon Ti microscope NikonIncludes: A1R hybrid confocal scanner including a high-resolution (4096x4096) scanner, LU4 four-laser AOTF unit with 405, 488, 561, and 647 lasers, Plan Apo 10 (NA 0.8), 20X (NA 0.9) dry objectives. 
Peristaltic pump IsamtecISM832C
Propidium IodideInvitrogenL3224
Vacuum silicone greaseSigmaZ273554-1EA

  1. Bevan, K. E., Mohamed, F., Moran, B. J. Pseudomyxoma peritonei. World Journal of Gastrointestinal Oncology. 2 (1), 44-50 (2010).
  2. Votanopoulos, K. I., et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: A feasibility study. Annals of Surgical Oncology. 26 (1), 139-147 (2019).
  3. Holliday, D. L., et al. The practicalities of using tissue slices as preclinical organotypic breast cancer models. Journal of Clinical Pathology. 66 (3), 253-255 (2013).
  4. Koerfer, J., et al. Organotypic slice cultures of human gastric and esophagogastric junction cancer. Cancer Medicine. 5 (7), 1444-1453 (2016).
  5. Misra, S., et al. Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma. Scientific Reports. 9 (1), 2133 (2019).
  6. Ohnishi, T., Matsumura, H., Izumoto, S., Hiraga, S., Hayakawa, T. A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Research. 58 (14), 2935-2940 (1998).
  7. Seidman, J. D., Elsayed, A. M., Sobin, L. H., Tavassoli, F. A. Association of mucinous tumors of the ovary and appendix. A clinicopathologic study of 25 cases. The Amerian Journal of Surgical Pathology. 17 (1), 22-34 (1993).
  8. Mizuta, Y., et al. Pseudomyxoma peritonei accompanied by intraductal papillary mucinous neoplasm of the pancreas. Pancreatology. 5 (4-5), 470-474 (2005).
  9. Gong, Y., Wang, X., Zhu, Z. Pseudomyxoma peritonei originating from transverse colon mucinous adenocarcinoma: A case report and literature review. Gastroenterology Research and Practice. 2020, 5826214 (2020).
  10. Fleten, K. G., et al. Experimental treatment of mucinous peritoneal metastases using patient-derived xenograft models. Translational Oncology. 13 (8), 100793 (2020).
  11. Kuracha, M. R., Thomas, P., Loggie, B. W., Govindarajan, V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Medicine. 5 (4), 711-719 (2016).
  12. Jiang, X., et al. Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment. Oncoimmunology. 6 (7), 1333210 (2017).
  13. Sundstrom, L., Morrison, B., Bradley, M., Pringle, A. Organotypic cultures as tools for functional screening in the CNS. Drug Discovery Today. 10 (14), 993-1000 (2005).
  14. Liu, L., Yu, L., Li, Z., Li, W., Huang, W. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. Journal of Translational Medicine. 19 (1), 40 (2021).
  15. Croft, C. L., Futch, H. S., Moore, B. D., Golde, T. E. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Molecular Neurodegeneration. 14 (1), 45 (2019).
  16. Carr, N. J. New insights in the pathology of peritoneal surface malignancy. Journal of Gastrointestinal Oncology. 12, 216-229 (2021).
  17. Votanopoulos, K. I., et al. Outcomes of repeat cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal surface malignancy. Journal of the American College of Surgeons. 215 (3), 412-417 (2012).
  18. Weitz, J., et al. An ex-vivo organotypic culture platform for functional interrogation of human appendiceal cancer reveals a prominent and heterogenous immunological landscape. Clinical Cancer Research. 28 (21), 4793-4806 (2022).
  19. Pitoulis, F. G., Watson, S. A., Perbellini, F., Terracciano, C. M. Myocardial slices come to age: an intermediate complexity in vitro cardiac model for translational research. Cardiovascular Research. 116 (7), 1275-1287 (2020).
  20. Habeler, W., Peschanski, M., Monville, C. Organotypic heart slices for cell transplantation and physiological studies. Organogenesis. 5 (2), 62-66 (2009).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved