A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The nasal epithelium is the primary barrier site encountered by all respiratory pathogens. Here, we outline methods to use primary nasal epithelial cells grown as air-liquid interface (ALI) cultures to characterize human coronavirus-host interactions in a physiologically relevant system.
Three highly pathogenic human coronaviruses (HCoVs) - SARS-CoV (2002), MERS-CoV (2012), and SARS-CoV-2 (2019) - have emerged and caused significant public health crises in the past 20 years. Four additional HCoVs cause a significant portion of common cold cases each year (HCoV-NL63, -229E, -OC43, and -HKU1), highlighting the importance of studying these viruses in physiologically relevant systems. HCoVs enter the respiratory tract and establish infection in the nasal epithelium, the primary site encountered by all respiratory pathogens. We use a primary nasal epithelial culture system in which patient-derived nasal samples are grown at an air-liquid interface (ALI) to study host-pathogen interactions at this important sentinel site. These cultures recapitulate many features of the in vivo airway, including the cell types present, ciliary function, and mucus production. We describe methods to characterize viral replication, host cell tropism, virus-induced cytotoxicity, and innate immune induction in nasal ALI cultures following HCoV infection, using recent work comparing lethal and seasonal HCoVs as an example1. An increased understanding of host-pathogen interactions in the nose has the potential to provide novel targets for antiviral therapeutics against HCoVs and other respiratory viruses that will likely emerge in the future.
Seven human coronaviruses (HCoVs) have been identified to date and cause a range of respiratory diseases2. The common or seasonal HCoVs (HCoV-NL63, -229E, -OC43, and -HKU1) are typically associated with upper respiratory tract pathology and cause an estimated 10%-30% of common cold cases annually. Though this is the typical clinical phenotype associated with the common HCoVs, these viruses can cause more significant lower respiratory tract disease in at-risk populations, including children, older adults, and immunocompromised individuals3,4. Three pathogenic HCoVs have emerged and caused significant public health emergencies in the last 20 years, including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. Lethal HCoVs are associated with more severe respiratory tract pathology, which is clearly illustrated by the >34% case-fatality rate associated with MERS-CoV cases (894 deaths from over 2,500 cases since its emergence in 2012)5,6. It is important to note that the lethal HCoVs also cause a range of respiratory tract diseases, from asymptomatic infections to lethal pneumonia, as seen with the ongoing COVID-19 pandemic7.
HCoVs, like other respiratory pathogens, enter the respiratory tract and establish a productive infection in the nasal epithelium8. Spread to the lower airway is thought to be associated with aspiration from the oral/nasal cavity to the lung, where HCoVs cause more significant lower respiratory tract pathology9,10,11. Thus, the nose serves as the initial portal for viral entry and is the primary barrier to infection with its robust mucociliary clearance machinery and unique innate immune mechanisms aimed at preventing further viral spread to the lower airway12,13. For example, nasal epithelial cells have been reported to express higher than average basal levels of antiviral interferons and interferon-stimulated genes, indicating that nasal cells may be primed for early responses to respiratory viruses14,15,16.
We have previously utilized patient-derived primary nasal epithelial cells grown at an air-liquid interface (ALI) to model HCoV-host interactions in the nose, where HCoV infections begin. Nasal ALI cultures are permissive to both pathogenic (SARS-CoV-2 and MERS-CoV) and common HCoVs (HCoV-NL63 and HCoV-229E) and offer various advantages over traditional airway epithelial cell lines such as A549 (a lung adenocarcinoma cell line)16,17. After differentiation, nasal ALI cultures contain a heterogeneous cellular population and exhibit many of the functions expected of the in vivo nasal epithelium, such as mucociliary clearance machinery18. Nasal cells also offer advantages over lower airway culture systems (such as human bronchial epithelial cells, HBECs), as the acquisition of nasal epithelial cells via cytologic brushing is significantly less invasive compared with using techniques such as bronchoscopy for attaining HBECs19,20,21.
This paper describes methods for utilizing this nasal ALI culture system to characterize HCoV-host interactions in the nasal epithelium. We have applied these methods in recently published works to compare SARS-CoV-2, MERS-CoV, HCoV-NL63, and HCoV-229E1,16,17. Though these methods and representative results emphasize the study of HCoVs in this nasal cell model, the system is highly adaptable to other HCoVs, as well as other respiratory pathogens. Further, these methods can be applied more broadly to other ALI culture systems in order to investigate viral replication and cellular tropism, as well as cytotoxicity and innate immune induction following infection.
Access restricted. Please log in or start a trial to view this content.
The use of nasal specimens was approved by the University of Pennsylvania Institutional Review Board (protocol # 800614) and the Philadelphia VA Institutional Review Board (protocol # 00781).
1. Infection of nasal ALI cultures
NOTE: Acquisition of clinical specimens, as well as growth and differentiation of nasal ALI cultures, is outside the scope of this paper. Specific methods for culturing primary nasal epithelial cells can be found in recently published works utilizing these cultures18,22,23. The below protocols can additionally be applied to commercially available nasal epithelial ALI cultures if desired. Protocols and volumes detailed below are applicable to 24-well plate transwell inserts (6.5 mm diameter, 0.33 cm2 membrane surface area). If using ALI cultures grown on larger transwells (i.e., 12-well plates, 12 mm diameter, 1.12 cm2 surface area), adjust the volumes proportionally to reflect the transwell size.
2. Collection of apical surface liquid (ASL) and titration of shed virus
3. Quantification of intracellular virus
4. Transepithelial electrical resistance (TEER) measurement
NOTE: For TEER measurement, PBS supplemented with calcium and magnesium (PBS + Ca2+/Mg2+) should be used. An epithelial volt/ohmmeter set to read in ohms is used (see the Table of Materials).
5. Measurement of cytotoxicity during infection via lactate dehydrogenase (LDH) assay
NOTE: In this work, LDH content in ASL samples was quantified using a commercially available cytotoxicity detection kit. LDH signal in basal medium was often below the limit of detection and often less reproducible than LDH quantified in ASL samples from HCoV-infected cultures.
6. Preparation of nasal ALI cultures for immunofluorescence (IF) imaging
7. Collection of intracellular protein for western immunoblotting or RNA for RT-qPCR analysis
Access restricted. Please log in or start a trial to view this content.
The representative figures are partially adapted from data that can be found in the manuscript Otter et al.1. Nasal ALI cultures derived from four or six donors were infected with one of four HCoVs (SARS-CoV-2, MERS-CoV, HCoV-NL63, and HCoV-229E) according to the protocols described above, and the average apically shed viral titers for each virus are depicted in Figure 1A. While all four of these HCoVs replicate productively in nasal ALI cultures, SARS-CoV-2 and HCoV-...
Access restricted. Please log in or start a trial to view this content.
The methods detailed here describe a primary epithelial culture system in which patient-derived nasal epithelial cells are grown at an air-liquid interface and applied to the study of HCoV-host interactions. Once differentiated, these nasal ALI cultures recapitulate many features of the in vivo nasal epithelium, including a heterogeneous cellular population with ciliated, goblet, and basal cells represented, as well as intact mucociliary function with robustly beating cilia and mucus secretion. This heterogeneou...
Access restricted. Please log in or start a trial to view this content.
Susan Weiss is on the Scientific Advisory Boards for Ocugen. Noam A. Cohen consults for GSK, AstraZeneca, Novartis, Sanofi/Regeron, and Oyster Point Pharmaceuticals and has a US Patent, "Therapy and Diagnostics for Respiratory Infection" (10,881,698 B2, WO20913112865), and a licensing agreement with GeneOne Life Sciences.
This study has the following funding sources: National Institutes of Health (NIH) R01AI 169537 (S.R.W. and N.A.C.), NIH R01AI 140442 (S.R.W.), VA Merit Review CX001717 (N.A.C.), VA Merit Review BX005432 (S.R.W. and N.A.C.), Penn Center for Research on Coronaviruses and other Emerging Pathogens (S.R.W.), Laffey-McHugh Foundation (S.R.W. and N.A.C.), T32 AI055400 (CJO), T32 AI007324 (AF).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Alexa Fluor secondary antibodies (488, 594, 647) | Invitrogen | Various | |
BSA (bovine serum albumin) | Sigma-Aldrich | A7906 | |
cOmplete mini EDTA-free protease inhibitor | Roche | 11836170001 | |
Cytotoxicity detection kit | Roche | 11644793001 | |
DMEM (Dulbecco's Modified Eagle Media) | Gibco | 11965-084 | |
DPBS (Dulbecco's Phosphate Buffered Saline) | Gibco | 14190136 | |
DPBS + calcium + magnesium | Gibco | 14040-117 | |
Endohm-6G measurement chamber | World Precision Instruments | ENDOHM-6G | |
Epithelial cell adhesion marker (EpCAM; CD326) | eBiosciences | 14-9326-82 | |
Epithelial Volt/Ohm (TEER) Meter (EVOM) | World Precision Instruments | 300523 | |
FBS (Fetal Bovine Serum) | HyClone | SH30071.03 | |
FV10-ASW software for imaging | Olympus | Version 4.02 | |
HCoV-NL63 (Human coronavirus, NL63) | BEI Resources | NR-470 | |
HCoV-NL63 nucleocapsid antibody | Sino Biological | 40641-V07E | |
Hoescht stain | Thermo Fisher | H3570 | |
Laemmli sample buffer (4x) | BIO-RAD | 1610747 | |
LLC-MK2 cells | ATCC | CCL-7 | To titrate HCoV-NL63 |
MERS-CoV (Human coronavirus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), EMC/2012) | BEI Resources | NR-44260 | |
MERS-CoV nucleocapsid antibody | Sino Biological | 40068-MM10 | |
MUC5AC antibody | Sigma-Aldrich | AMAB91539 | |
Olympus Fluoview confocal microscope | Olympus | FV1000 | |
Phalloidin-iFluor 647 stain | Abcam | ab176759 | |
PhosStop easy pack (phosphatase inhibitors) | Roche | PHOSS-RO | |
Plate reader | Perkin Elmer | HH34000000 | Any plate reader or ELISA reader is sufficient; must be able to read absorbance at 492 nm |
RIPA buffer (50 mM Tris pH 8; 150 mM NaCl; 0.5% deoxycholate; 0.1% SDS; 1% NP40) | Thermo Fisher | 89990 | Can prep in-house or purchase |
RNeasy Plus Kit | Qiagen | 74134 | |
SARS-CoV-2 (SARS-Related Coronavirus 2, Isolate USA-WA1/2020) | BEI Resources | NR-52281 | |
SARS-CoV-2 nucleocapsid antibody | Genetex | GTX135357 | |
Triton-X 100 | Fisher Scientific | BP151100 | |
Type IV β- tubulin antibody | Abcam | ab11315 | |
VeroCCL81 cells | ATCC | CCL-81 | To titrate MERS-CoV |
VeroE6 cells | ATCC | CRL-1586 | To titrate SARS-CoV-2 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved