JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Cancer Research

Erzeugung und Kultivierung von hochgradigen serösen Ovarialkarzinom-Organoiden, die von Patientinnen stammen

Published: January 6th, 2023

DOI:

10.3791/64878

1Washington University in St. Louis, 2University of California San Francisco
* These authors contributed equally

Patient-derived Organoids (PDO) sind eine dreidimensionale (3D) Kultur, die die Tumorumgebung in vitro nachahmen kann. Bei hochgradigem serösem Ovarialkarzinom stellen PDOs ein Modell zur Untersuchung neuartiger Biomarker und Therapeutika dar.

Organoide sind dynamische 3D-Tumormodelle, die erfolgreich aus patientischem Ovarialtumorgewebe, Aszites oder Pleuraflüssigkeit gezüchtet werden können und bei der Entdeckung neuartiger Therapeutika und prädiktiver Biomarker für Eierstockkrebs helfen. Diese Modelle rekapitulieren die klonale Heterogenität, die Tumormikroumgebung sowie Zell-Zell- und Zell-Matrix-Interaktionen. Darüber hinaus wurde gezeigt, dass sie morphologisch, zytologisch, immunhistochemisch und genetisch mit dem Primärtumor übereinstimmen. So erleichtern Organoide die Erforschung von Tumorzellen und der Tumormikroumgebung und sind Zelllinien überlegen. Das vorliegende Protokoll beschreibt verschiedene Methoden zur Erzeugung von von Patientinnen stammenden Ovarialkarzinom-Organoiden aus Patiententumoren, Aszites und Pleuraflüssigkeitsproben mit einer Erfolgsrate von mehr als 97%. Die Patientenproben werden sowohl durch mechanischen als auch durch enzymatischen Aufschluss in zelluläre Suspensionen getrennt. Die Zellen werden dann mit einem Basalmembranextrakt (BME) plattiert und mit optimierten Wachstumsmedien unterstützt, die Nahrungsergänzungsmittel enthalten, die spezifisch für die Kultivierung von hochgradigem serösem Ovarialkarzinom (HGSOC) sind. Nach der Bildung der ersten Organoide können die PDOs eine Langzeitkultur aufrechterhalten, einschließlich der Passage zur Expansion für nachfolgende Experimente.

Im Jahr 2021 wurde bei etwa 21.410 Frauen in den Vereinigten Staaten neu epithelialer Eierstockkrebs diagnostiziert, und 12.940 Frauen starben an dieser Krankheit1. Obwohl in der Chirurgie und Chemotherapie ausreichende Fortschritte erzielt wurden, entwickeln über 70% der Patienten mit fortgeschrittener Erkrankung eine chemotherapeutische Resistenz und sterben innerhalb von 5 Jahren nach der Diagnose 2,3. Neue Strategien zur Behandlung dieser tödlichen Krankheit und repräsentative, verlässliche Modelle für die präklinische Forschung sind daher dringend erforderlich.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Alle menschlichen Gewebeproben, die für Forschungszwecke gesammelt wurden, wurden gemäß dem vom Institutional Review Board (IRB) genehmigten Protokoll gewonnen. Die unten beschriebenen Protokolle wurden in einer sterilen menschlichen Gewebekulturumgebung durchgeführt. Die schriftliche Einverständniserklärung wurde von menschlichen Probanden eingeholt. Geeignete Patienten mussten eine Diagnose oder vermutete Diagnose von Eierstockkrebs haben, bereit und in der Lage sein, eine Einverständniserklärung zu unterschrei.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Um PDOs zu erzeugen, wurden die Proben mechanisch und enzymatisch zu Einzelzellsuspensionen aufgeschlossen. Die Zellen wurden dann in BME resuspendiert und mit speziell hergestellten Medien ergänzt (Abbildung 3). Organoide werden in der Regel über einen Zeitraum von 10 Tagen etabliert, danach zeigen sie diskrete Organoide in Kultur (Abbildung 4).

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Eierstockkrebs ist aufgrund seines fortgeschrittenen Stadiums bei der Diagnose sowie der häufigen Entwicklung einer Chemotherapieresistenz extrem tödlich. Viele Fortschritte in der Eierstockkrebsforschung wurden durch die Verwendung von Krebszelllinien und PDX-Modellen erzielt. Es besteht jedoch ein offensichtlicher Bedarf an einem repräsentativeren und erschwinglicheren In-vitro-Modell . PDOs repräsentieren nachweislich die Tumorheterogenität, die Tumormikroumgebung sowie die genomischen und transkriptomis.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Wir sind dankbar für die Anleitung von Ron Bose, MD, PhD, und die Unterstützung von Barbara Blachut, MD, bei der Erstellung dieses Protokolls. Wir möchten uns auch bei der School of Medicine der Washington University in der Abteilung für Geburtshilfe und Gynäkologie und der Abteilung für gynäkologische Onkologie, dem Dean's Scholar Program der Washington University und dem Reproductive Scientist Development Program für die Unterstützung dieses Projekts bedanken.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1% HEPESLife Technologies15630080
1% Penicillin-StreptomycinFisher Scientific30002CI
1.5 mL Eppendorf Tubes Genesee Scientific14125
10 cm Tissue Culture Dish TPP93100
10 mL Serological Pipet
100 µm Cell FilterMidSci100ICS
15 mL centrifuge tubesCorning430052
2 mL CryovialSimport ScientificT301-2
2% Paraformaldehyde FixativeSigma-Aldrich
37 °C water bath NEST602052
3dGRO R-Spondin-1 Conditioned Media SupplementMillipore SigmaSCM104
6 well platesTPP92006
70% EthanolSigma-AldrichR31541GA
A83-01Sigma-AldrichSML0788
Advanced DMEM/F12ThermoFisher12634028
AgarLamda BiotechC121
B-27Life Technologies17504044
Centrifuge 
Cultrex Type 2R&D Systems3533-010-02basement membrane extract
DNase INew England Bio LabsM0303S
DNase I Reaction BufferNew England Bio LabsM0303S
EGFPeproTechAF-100-15
FBS Sigma-AldrichF2442
FGF-10PeproTech100-26
FGF2PeproTech100-18B
gentleMACS C TubesMiltenyi BioTech130-096-334
gentleMACS Octo Dissociator with HeatersMiltenyi BioTech130-096-427We use the manufacturers protocol.
GlutaMAXLife Technologies35050061dipeptide, L-alanyl-L-glutamine
Hematoxylin and Eosin Staining KitFisher ScientificNC1470670
Histoplast Paraffin WaxFisher Scientific22900700
Microcentrifuge 
Mr. Frosty Freezing ContainerFisher Scientific07202363S
N-acetylcysteineSigma-AldrichA9165
NicotinamideSigma-AldrichN0636
p1000 Pipette with Tips 
p200 Pipette with Tips 
Pasteur Pipettes 9"Fisher Scientific1367820D
PBSFisher ScientificMT21031CM
Pipet Controller
Prostaglandin E2R&D Systems2296
Puromycin ThermoFisherA1113802
Recombinant Murine NogginPeproTech250-38
Recovery Cell Culture Freezing MediumInvitrogen12648010
Red Blood Cell Lysis BufferBioLegend420301
ROCK Inhibitor (Y-27632)R&D Systems1254/1
SB202190Sigma-AldrichS7076
T75 FlaskMidSciTP90076
Tissue Culture Hood 
Tissue Embedding Cassette
TrypLE ExpressInvitrogen12604013animal origin-free, recombinant enzyme
Type II CollagenaseLife Technologies17101015
Vortex

  1. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68 (6), 394-424 (2018).
  2. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  3. Pauli, C., et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discovery. 7 (5), 462-477 (2017).
  4. Fujii, E., Kato, A., Suzuki, M. Patient-derived xenograft (PDX) models: Characteristics and points to consider for the process of establishment. Journal of Toxicologic Pathology. 33 (3), 153-160 (2020).
  5. Yang, J., et al. Application of ovarian cancer organoids in precision medicine: Key challenges and current opportunities. Frontiers in Cell and Developmental Biology. 9, 701429 (2021).
  6. Yang, H., et al. Patient-derived organoids: A promising model for personalized cancer treatment. Gastroenterology Report. 6 (4), 243-245 (2018).
  7. Karakasheva, T. A., et al. Generation and characterization of patient-derived head and neck, oral, and esophageal cancer organoids. Current Protocols in Stem Cell Biology. 53 (1), 109 (2020).
  8. Madison, B. B., et al. Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2. PLoS Genetics. 11 (8), 1005408 (2015).
  9. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  10. Murray, E., et al. HER2 and APC mutations promote altered crypt-villus morphology and marked hyperplasia in the intestinal epithelium. Cellular and Molecular Gastroenterology and Hepatology. 12 (3), 1105-1120 (2021).
  11. Hill, S. J., et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discovery. 8 (11), 1404-1421 (2018).
  12. Passarelli, M. C., et al. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nature Cell Biology. 24 (3), 307-315 (2022).
  13. Pleguezuelos-Manzano, C., et al. Establishment and culture of human intestinal organoids derived from adult stem cells. Current Protocols in Immunology. 130 (1), 106 (2020).
  14. Stumm, M. M., et al. Validation of a postfixation tissue storage and transport medium to preserve histopathology and molecular pathology analyses (total and phosphoactivated proteins, and FISH). American Journal of Clinical Pathology. 137 (3), 429-436 (2012).
  15. Feldman, A. T., Wolfe, D. Tissue processing and hematoxylin and eosin staining. Methods in Molecular Biology. 1180, 31-43 (2014).
  16. Ooft, S. N., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science Translational Medicine. 11 (513), (2019).
  17. Aisenbrey, E. A., Murphy, W. L. Synthetic alternatives to Matrigel. Nature Reviews Materials. 5 (7), 539-551 (2020).
  18. Nanki, Y., et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Scientific Reports. 10, 12581 (2020).
  19. Mead, B. E., et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nature Biomedical Engineering. 6 (4), 476-494 (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved