JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Cancer Research

Geração e Cultivo de Organoides Derivados de Pacientes com Câncer de Ovário Seroso de Alto Grau

Published: January 6th, 2023

DOI:

10.3791/64878

1Washington University in St. Louis, 2University of California San Francisco
* These authors contributed equally

Os organoides derivados do paciente (DOP) são uma cultura tridimensional (3D) que pode imitar o ambiente tumoral in vitro. No câncer de ovário seroso de alto grau, as DOPs representam um modelo para estudar novos biomarcadores e terapias.

Os organoides são modelos de tumores dinâmicos 3D que podem ser cultivados com sucesso a partir de tecido tumoral de ovário derivado do paciente, ascite ou líquido pleural e ajudam na descoberta de novas terapêuticas e biomarcadores preditivos para o câncer de ovário. Esses modelos recapitulam a heterogeneidade clonal, o microambiente tumoral e as interações célula-célula e célula-matriz. Além disso, eles demonstraram corresponder ao tumor primário morfologicamente, citologicamente, imuno-histoquimicamente e geneticamente. Assim, os organoides facilitam a pesquisa sobre as células tumorais e o microambiente tumoral e são superiores às linhagens celulares. O presente protocolo descreve métodos distintos para gerar organoides de câncer de ovário derivados de pacientes a partir de tumores, ascite e amostras de líquido pleural com uma taxa de sucesso superior a 97%. As amostras do paciente são separadas em suspensões celulares por digestão mecânica e enzimática. As células são então banhadas utilizando um extrato de membrana basal (BME) e são suportadas com meios de crescimento otimizados contendo suplementos específicos para a cultura de câncer de ovário seroso de alto grau (HGSOC). Depois de formar organoides iniciais, as DOP podem sustentar a cultura a longo prazo, incluindo a passagem para expansão para experimentos subsequentes.

Em 2021, aproximadamente 21.410 mulheres nos Estados Unidos foram recém-diagnosticadas com câncer de ovário epitelial, e 12.940 mulheres morreram dessa doença1. Embora avanços suficientes tenham sido feitos na cirurgia e na quimioterapia, mais de 70% dos pacientes com doença avançada desenvolvem resistência quimioterápica e morrem dentro de 5 anos após o diagnóstico 2,3. Assim, novas estratégias para tratar esta doença mortal e modelos representativos e confiáveis para a pesquisa pré-clínica são urgentemente necessários.

Linhagens celulares de câncer e xenoen....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Todos os espécimes de tecido humano coletados para pesquisa foram obtidos de acordo com o protocolo aprovado pelo Institutional Review Board (IRB). Os protocolos descritos abaixo foram realizados em um ambiente estéril de cultura de tecidos humanos. O termo de consentimento livre e esclarecido foi obtido de seres humanos. As pacientes elegíveis tinham que ter um diagnóstico ou diagnóstico presumido de câncer de ovário, estar dispostas e capazes de assinar o consentimento informado e ter pelo menos 18 anos de idade.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Para gerar DOPs, as amostras foram digeridas mecanicamente e enzimaticamente em suspensões unicelulares. As células foram então ressuspensas em BME e suplementadas com meios especificamente modificados (Figura 3). Os organoides são tipicamente estabelecidos ao longo de um período de tempo de 10 dias, após o qual demonstram organoides discretos em cultura (Figura 4).

Log in or to access full content. Learn more about your institution’s access to JoVE content here

O câncer de ovário é extremamente mortal devido ao seu estágio avançado no diagnóstico, bem como ao desenvolvimento comum de resistência à quimioterapia. Muitos avanços na pesquisa do câncer de ovário foram feitos utilizando linhas celulares de câncer e modelos PDX; no entanto, há uma necessidade evidente de um modelo in vitro mais representativo e acessível. As DOP têm demonstrado representar com precisão a heterogeneidade tumoral, o microambiente tumoral e as características genômicas e trans.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Somos gratos pela orientação de Ron Bose, MD, PhD, e pela assistência de Barbara Blachut, MD, no estabelecimento deste protocolo. Também gostaríamos de agradecer à Escola de Medicina da Universidade de Washington no Departamento de Obstetrícia e Ginecologia e Divisão de Oncologia Ginecológica da Universidade de Washington, ao Programa Acadêmico do Decano da Universidade de Washington e ao Programa de Desenvolvimento de Cientistas Reprodutivos por seu apoio a este projeto.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1% HEPESLife Technologies15630080
1% Penicillin-StreptomycinFisher Scientific30002CI
1.5 mL Eppendorf Tubes Genesee Scientific14125
10 cm Tissue Culture Dish TPP93100
10 mL Serological Pipet
100 µm Cell FilterMidSci100ICS
15 mL centrifuge tubesCorning430052
2 mL CryovialSimport ScientificT301-2
2% Paraformaldehyde FixativeSigma-Aldrich
37 °C water bath NEST602052
3dGRO R-Spondin-1 Conditioned Media SupplementMillipore SigmaSCM104
6 well platesTPP92006
70% EthanolSigma-AldrichR31541GA
A83-01Sigma-AldrichSML0788
Advanced DMEM/F12ThermoFisher12634028
AgarLamda BiotechC121
B-27Life Technologies17504044
Centrifuge 
Cultrex Type 2R&D Systems3533-010-02basement membrane extract
DNase INew England Bio LabsM0303S
DNase I Reaction BufferNew England Bio LabsM0303S
EGFPeproTechAF-100-15
FBS Sigma-AldrichF2442
FGF-10PeproTech100-26
FGF2PeproTech100-18B
gentleMACS C TubesMiltenyi BioTech130-096-334
gentleMACS Octo Dissociator with HeatersMiltenyi BioTech130-096-427We use the manufacturers protocol.
GlutaMAXLife Technologies35050061dipeptide, L-alanyl-L-glutamine
Hematoxylin and Eosin Staining KitFisher ScientificNC1470670
Histoplast Paraffin WaxFisher Scientific22900700
Microcentrifuge 
Mr. Frosty Freezing ContainerFisher Scientific07202363S
N-acetylcysteineSigma-AldrichA9165
NicotinamideSigma-AldrichN0636
p1000 Pipette with Tips 
p200 Pipette with Tips 
Pasteur Pipettes 9"Fisher Scientific1367820D
PBSFisher ScientificMT21031CM
Pipet Controller
Prostaglandin E2R&D Systems2296
Puromycin ThermoFisherA1113802
Recombinant Murine NogginPeproTech250-38
Recovery Cell Culture Freezing MediumInvitrogen12648010
Red Blood Cell Lysis BufferBioLegend420301
ROCK Inhibitor (Y-27632)R&D Systems1254/1
SB202190Sigma-AldrichS7076
T75 FlaskMidSciTP90076
Tissue Culture Hood 
Tissue Embedding Cassette
TrypLE ExpressInvitrogen12604013animal origin-free, recombinant enzyme
Type II CollagenaseLife Technologies17101015
Vortex

  1. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68 (6), 394-424 (2018).
  2. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  3. Pauli, C., et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discovery. 7 (5), 462-477 (2017).
  4. Fujii, E., Kato, A., Suzuki, M. Patient-derived xenograft (PDX) models: Characteristics and points to consider for the process of establishment. Journal of Toxicologic Pathology. 33 (3), 153-160 (2020).
  5. Yang, J., et al. Application of ovarian cancer organoids in precision medicine: Key challenges and current opportunities. Frontiers in Cell and Developmental Biology. 9, 701429 (2021).
  6. Yang, H., et al. Patient-derived organoids: A promising model for personalized cancer treatment. Gastroenterology Report. 6 (4), 243-245 (2018).
  7. Karakasheva, T. A., et al. Generation and characterization of patient-derived head and neck, oral, and esophageal cancer organoids. Current Protocols in Stem Cell Biology. 53 (1), 109 (2020).
  8. Madison, B. B., et al. Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2. PLoS Genetics. 11 (8), 1005408 (2015).
  9. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  10. Murray, E., et al. HER2 and APC mutations promote altered crypt-villus morphology and marked hyperplasia in the intestinal epithelium. Cellular and Molecular Gastroenterology and Hepatology. 12 (3), 1105-1120 (2021).
  11. Hill, S. J., et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discovery. 8 (11), 1404-1421 (2018).
  12. Passarelli, M. C., et al. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nature Cell Biology. 24 (3), 307-315 (2022).
  13. Pleguezuelos-Manzano, C., et al. Establishment and culture of human intestinal organoids derived from adult stem cells. Current Protocols in Immunology. 130 (1), 106 (2020).
  14. Stumm, M. M., et al. Validation of a postfixation tissue storage and transport medium to preserve histopathology and molecular pathology analyses (total and phosphoactivated proteins, and FISH). American Journal of Clinical Pathology. 137 (3), 429-436 (2012).
  15. Feldman, A. T., Wolfe, D. Tissue processing and hematoxylin and eosin staining. Methods in Molecular Biology. 1180, 31-43 (2014).
  16. Ooft, S. N., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science Translational Medicine. 11 (513), (2019).
  17. Aisenbrey, E. A., Murphy, W. L. Synthetic alternatives to Matrigel. Nature Reviews Materials. 5 (7), 539-551 (2020).
  18. Nanki, Y., et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Scientific Reports. 10, 12581 (2020).
  19. Mead, B. E., et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nature Biomedical Engineering. 6 (4), 476-494 (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved