JoVE Logo

Sign In

Abstract

Bioengineering

Light-Induced Dielectrophoresis for Characterizing the Electrical Behavior of Human Mesenchymal Stem Cells

Published: June 16th, 2023

DOI:

10.3791/64909

1Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, 2Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, 3Department of Chemistry, School of Physical Sciences, University of California, Irvine, 4Sue & Bill Gross Stem Cell Research Center, University of California, Irvine

Abstract

Human mesenchymal stem cells (hMSCs) offer a patient-derived cell source for conducting mechanistic studies of diseases or for several therapeutic applications. Understanding hMSC properties, such as their electrical behavior at various maturation stages, has become more important in recent years. Dielectrophoresis (DEP) is a method that can manipulate cells in a nonuniform electric field, through which information can be obtained about the electrical properties of the cells, such as the cell membrane capacitance and permittivity. Traditional modes of DEP use metal electrodes, such as three-dimensional electrodes, to characterize the response of cells to DEP. In this paper, we present a microfluidic device built with a photoconductive layer capable of manipulating cells through light projections that act as in situ virtual electrodes with readily conformable geometries. A protocol is presented here that demonstrates this phenomenon, called light-induced DEP (LiDEP), for characterizing hMSCs. We show that LiDEP-induced cell responses, measured as cell velocities, can be optimized by varying parameters such as the input voltage, the wavelength ranges of the light projections, and the intensity of the light source. In the future, we envision that this platform could pave the way for technologies that are label-free and perform real-time characterization of heterogeneous populations of hMSCs or other stem cell lines.

Explore More Videos

Keywords Light induced Dielectrophoresis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved