JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Genetics

ATAC-seq adipocita-specifico con tessuti adiposi mediante selezione del nucleo attivato dalla fluorescenza

Published: March 17th, 2023

DOI:

10.3791/65033

1Department of Biochemistry and Molecular Biology, Indiana University School of Medicine

Presentiamo un protocollo per il dosaggio della cromatina accessibile alla trasposasi con sequenziamento ad alto rendimento (ATAC-seq) specificamente sugli adipociti utilizzando la selezione del nucleo con tessuti adiposi isolati da topi reporter transgenici con marcatura a fluorescenza nucleare.

Il saggio per la cromatina accessibile alla trasposasi con sequenziamento ad alta produttività (ATAC-seq) è una tecnica robusta che consente la profilazione dell'accessibilità della cromatina a livello di genoma. Questa tecnica è stata utile per comprendere i meccanismi regolatori dell'espressione genica in una serie di processi biologici. Sebbene ATAC-seq sia stato modificato per diversi tipi di campioni, non ci sono state modifiche efficaci dei metodi ATAC-seq per i tessuti adiposi. Le sfide con i tessuti adiposi includono la complessa eterogeneità cellulare, il grande contenuto lipidico e l'elevata contaminazione mitocondriale. Per superare questi problemi, abbiamo sviluppato un protocollo che consente l'ATAC-seq adipocyte-specific utilizzando la selezione del nucleo attivata dalla fluorescenza con tessuti adiposi dal topo transgenico reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP). Questo protocollo produce dati di alta qualità con letture di sequenziamento minime sprecate, riducendo al contempo la quantità di input del nucleo e reagenti. Questo articolo fornisce istruzioni dettagliate passo-passo per il metodo ATAC-seq convalidato per l'uso di nuclei di adipociti isolati da tessuti adiposi di topo. Questo protocollo aiuterà nello studio della dinamica della cromatina negli adipociti su diverse stimolazioni biologiche, che consentiranno nuove intuizioni biologiche.

Il tessuto adiposo, specializzato per immagazzinare l'energia in eccesso sotto forma di molecole lipidiche, è un organo chiave per la regolazione metabolica. Lo stretto controllo della formazione e del mantenimento degli adipociti è vitale per la funzione del tessuto adiposo e l'omeostasi energetica di tutto il corpo1. Molti regolatori trascrizionali svolgono un ruolo critico nel controllo della differenziazione, della plasticità e della funzione degli adipociti; Alcuni di questi regolatori sono implicati nei disordini metabolici nell'uomo 2,3. I recenti progressi nelle tecniche di sequ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

La cura e la sperimentazione degli animali sono state eseguite secondo procedure approvate dall'Institutional Animal Care and Use Committee della Indiana University School of Medicine.

1. Preparativi prima di iniziare l'esperimento

  1. Preparazione dei tessuti
    1. Per la marcatura del nucleo adipocitario, incrociare topi NuTRAP con linee adiponectina-Cre specifiche per adipociti (Adipoq-Cre) per generare topi Adipoq-NuTRAP, che sono emizigoti sia per Adipoq-Cre che pe.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Per analizzare il tessuto adiposo utilizzando questo protocollo ATAC-seq, abbiamo generato topi Adipoq-NuTRAP che sono stati alimentati con diete chow; abbiamo quindi isolato i nuclei degli adipociti dal tessuto adiposo bianco epididimo (eWAT), dal tessuto adiposo bianco inguinale (iWAT) e dal tessuto adiposo bruno (BAT) utilizzando la citometria a flusso. I nuclei isolati sono stati utilizzati per la marcatura, seguita dalla purificazione del DNA, dall'amplificazione PCR, dalle fasi di controllo della qualità, dal sequ.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In questo articolo, abbiamo presentato un protocollo ATAC-seq ottimizzato per valutare l'accessibilità della cromatina adipocita-specifica in vivo. Questo protocollo ATAC-seq che utilizza il mouse Adipoq-NuTRAP ha generato con successo profili di accessibilità della cromatina adipociti-specifici. Il fattore più critico per esperimenti ATAC-seq di successo e riproducibili è la qualità del nucleo. È fondamentale congelare immediatamente i tessuti adiposi sezionati in azoto liquido e conservarli in modo sicur.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Questo lavoro è stato sostenuto dallo IUSM Showalter Research Trust Fund (a H.C.R.), un centro IUSM per il diabete e le malattie metaboliche Pilot and Feasibility grant (a H.C.R.), il National Institute of Diabetes and Digestive and Kidney Diseases (R01DK129289 a H.C.R.), e l'American Diabetes Association Junior Faculty Award (7-21-JDF-056 a H.C.R.).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Animals
Adiponectin-Cre mouseThe Jackson Laboratory28020
NuTRAP mouseThe Jackson Laboratory29899
Reagents & Materials
1.5 mL DNA-LoBind tubesEppendorf86-923
100 µm cell strainerFalcon352-360
15 mL tubesVWR525-1071
2x TD bufferIllumina15027866
384-well PCR plateApplied biosystem4483285
40 µm cell strainerFalcon352-340
50 mL tubesVWR525-1077
AMPure XP reagent (SPRI beads)Beckman CoulterA63881
Bioanalyzer High Sensitivity DNA kitAgilent Technologies5067-4626
Clear adhesive filmApplied biosystem4306311
DNase/RNase-free distilled waterInvitrogen10977015
Dounce tissue grinderDWK Life Sciences357542
DTTSigmaD9779
DynaMag-96 side skirted magnetThermo Fishers12027
FACS tubesFalcon 28719128
HEPESBoston BioProductsBBH-75
Hoechst 33342Invitrogen2134015
KCl (2 M)Boston BioProductsMT-252
Magnetic separation rack for PCR 8-tube stripsEpiCypher10-0008
MgCl2 (1 M)Boston BioProductsMT-200
MinElute PCR purification kitQiagen28004
NEBNext High-Fidelity 2x PCR master mixBioLabsM0541S
NP40Thermo Fishers28324
PCR 8-tube stripUSA scientific1402-4708
Protease inhibitor cocktail (100x)Thermo Fishers78439
Qubit dsDNA HS assay kitInvitrogenQ32851
SucroseSigmaS0389-1KG
SYBR Green I (10,000x)InvitrogenS7563
TDE I enzymeIllumina15027865
Instruments
Flow cytometerBD BiosciencesFACSAria Fusion
Qubit fluorometerInvitrogenQ33226
Real-Time PCR systemThermo FishersQuantStudio 5

  1. Sethi, J. K., Vidal-Puig, A. J. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research. 48 (6), 1253-1262 (2007).
  2. Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metabolism. 4 (4), 263-273 (2006).
  3. Bielczyk-Maczynska, E. White adipocyte plasticity in physiology and disease. Cells. 8 (12), 1507 (2019).
  4. Basu, U., Romao, J. M., Guan, L. L. Adipogenic transcriptome profiling using high throughput technologies. Journal of Genomics. 1, 22-28 (2013).
  5. Esteve Rafols, M. Adipose tissue: Cell heterogeneity and functional diversity. Endocrinologia y Nutricion. 61 (2), 100-112 (2014).
  6. Kwok, K. H., Lam, K. S., Xu, A. Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Experimental and Molecular Medicine. 48, e215 (2016).
  7. Roh, H. C., et al. Simultaneous transcriptional and epigenomic profiling from specific cell types within heterogeneous tissues in vivo. Cell Reports. 18 (4), 1048-1061 (2017).
  8. Roh, H. C., et al. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Molecular Metabolism. 42, 101086 (2020).
  9. Roh, H. C., et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cellular Metabolism. 27 (5), 1121.e5-1137.e5 (2018).
  10. Buenrostro, J. D., et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods. 10 (12), 1213-1218 (2013).
  11. Corces, M. R., et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genetics. 48 (10), 1193-1203 (2016).
  12. Corces, M. R., et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature Methods. 14 (10), 959-962 (2017).
  13. Wu, J., et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature. 557 (7704), 256-260 (2018).
  14. Bagchi, D. P., MacDougald, O. A. Identification and dissection of diverse mouse adipose depots. Journal of Visualized Experiments. (149), e59499 (2019).
  15. So, J., et al. Chronic cAMP activation induces adipocyte browning through discordant biphasic remodeling of transcriptome and chromatin accessibility. Molecular Metabolism. 66, 101619 (2022).
  16. Loft, A., Herzig, S., Schmidt, S. F. Purification of GFP-tagged nuclei from frozen livers of INTACT mice for RNA- and ATAC-sequencing. STAR Protocols. 2 (3), 100805 (2021).
  17. Heyward, F. D., et al. Integrated genomic analysis of AgRP neurons reveals that IRF3 regulates leptin's hunger-suppressing effects. bioRxiv. , (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved