JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Using the MouseWalker to Quantify Locomotor Dysfunction in a Mouse Model of Spinal Cord Injury

Published: March 24th, 2023



1Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 2iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 3Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa

An experimental pipeline to quantitatively describe the locomotor pattern of freely walking mice using the MouseWalker (MW) toolbox is provided, ranging from initial video recordings and tracking to post-quantification analysis. A spinal cord contusion injury model in mice is employed to demonstrate the usefulness of the MW system.

The execution of complex and highly coordinated motor programs, such as walking and running, is dependent on the rhythmic activation of spinal and supra-spinal circuits. After a thoracic spinal cord injury, communication with upstream circuits is impaired. This, in turn, leads to a loss of coordination, with limited recovery potential. Hence, to better evaluate the degree of recovery after the administration of drugs or therapies, there is a necessity for new, more detailed, and accurate tools to quantify gait, limb coordination, and other fine aspects of locomotor behavior in animal models of spinal cord injury. Several assays have been developed over the years to quantitatively assess free-walking behavior in rodents; however, they usually lack direct measurements related to stepping gait strategies, footprint patterns, and coordination. To address these shortcomings, an updated version of the MouseWalker, which combines a frustrated total internal reflection (fTIR) walkway with tracking and quantification software, is provided. This open-source system has been adapted to extract several graphical outputs and kinematic parameters, and a set of post-quantification tools can be to analyze the output data provided. This manuscript also demonstrates how this method, allied with already established behavioral tests, quantitatively describes locomotor deficits following spinal cord injury.

The effective coordination of four limbs is not unique to quadruped animals. Forelimb-hindlimb coordination in humans remains important to accomplish several tasks, such as swimming and alterations of speed while walking1. Various limb kinematic2 and motor program1,3,4, as well as proprioceptive feedback circuits5, are conserved between humans and other mammals and should be considered when analyzing therapeutic options for motor disorders, such as spinal cord injury (SCI)6

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All handling, surgical, and post-operative care procedures were approved by Instituto de Medicina Molecular Internal Committee (ORBEA) and the Portuguese Animal Ethics Committee (DGAV) in accordance with the European Community guidelines (Directive 2010/63/EU) and the Portuguese law on animal care (DL 113/2013) under the license 0421/000/000/2022. Female C57Bl/6J mice aged 9 weeks were used for the present study. All efforts were made to minimize the number of animals and to decrease the suffering of the animals used in .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The standard BMS system describes the gross motor deficits after SCI14. Due to its subjective nature, other quantitative assays are generally performed alongside the BMS to produce a more detailed and fine assessment of locomotion. However, these tests fail to show specific information about step cycles, stepping patterns, and forelimb-hindlimb coordination, which is extremely important in understanding how the spinal circuitry maintains function and adapts to an incomplete SCI. This section shows.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here, the potential of the MouseWalker method is demonstrated by analyzing locomotor behavior after SCI. It provides new insights into specific alterations in stepping, footprint, and gait patterns that would otherwise be missed by other standard tests. In addition to providing an updated version of the MW package, data analysis tools are also described using the supplied Python scripts (see step 5).

As the MW generates a large dataset and a collection of kinematic parameters that reflect a hi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors thank Laura Tucker and Natasa Loncarevic for their comments on the manuscript and the support given by the Rodent Facility of the Instituto de Medicina Molecular João Lobo Antunes. The authors want to acknowledge financial support from Prémios Santa Casa Neurociências - Prize Melo e Castro for Spinal Cord Injury Research (MC-36/2020) to L.S. and C.S.M. This work was supported by Fundação para a Ciência e a Tecnologia (FCT) (PTDC/BIA-COM/0151/2020), iNOVA4Health (UIDB/04462/2020 and UIDP/04462/2020), and LS4FUTURE (LA/P/0087/2020) to C.S.M. L.S. was supported by a CEEC Individual Principal Investigator contract (2021.02253.CEEC....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
45º Mirror 
2 aluminum extrusion (2 x 2 cm), 16 cm height, 1 on each sideMisumi
2 aluminum extrusion (2 x 2 cm), 23 cm, @ 45° , 1 on each sideMisumi
1 aluminum extrusion (2 x 2 cm), 83 cm longMisumi
87 x 23 cm mirrorGeneral glass supplier 
black cardboard filler General stationery supplierWe used 2, one with 69 x 6 cm and another with 69 x 3cm to limit the reflection on the mirror
Background backlight
109 x 23 cm plexiglass (0.9525 cm thick)General hardware supplier
2 lateral aluminum extrusion (4 x 4 cm), 20 cm long, 1 on each sideMisumi
multicolor LED stripGeneral hardware supplier
white opaque paper to cover the plexyglassGeneral stationery supplier
fTIR Support base and posts
2 aluminum extrusion (4 x 4 cm), 100 cm heightMisumi
60 x 30 cm metric breadboardEdmund Optics #54-641
M6 12 mm screwsEdmund Optics 
M6 hex nuts and wahersEdmund Optics 
fTIR Walkway 
109 x 8.5 cm plexyglass (1.2 cm thick)General hardware supplier109 x 8.5 cm plexyglass (1.2 cm thick)
109 cm long Base-U-channel aluminum with 1.6 cm height x 1.9 cm depth thick folds (to hold the plexyglass)General hardware supplier
2 lateral aluminum extrusion (4 x 4 cm) 20 cm length, 1 on each sideMisumi
black cardboard filler General stationery supplierwe used 2 fillers on each side to cover the limits of the plexyglass, avoiding bright edges
12 mm screwsEdmund Optics M6
High speed camera (on a tripod)
Blackfly S USB3BlackflyUSB3This is a reccomendation. The requirement is to record at least 100 frames per second
Infinite Horizon Impactor 
Infinite Horizon Impactor Precision Systems and Instrumentation, LLC.
Nikkon AF Zoom-Nikkor 24-85mmNikkon 2.8-4D IFThis lens is reccomended, however other lens can be used. Make sure it contains a large aperture (i.e., smaller F-stop values), to capture fTIR signals
MATLAB R2022bMathWorks
Python 3.9.13 Python Software Foundation
Anaconda Navigator 2.1.4Anaconda, Inc.
Spyder 5.1.5 Spyder Project Contributors
Walkway wall 
2 large rectagular acrilics with 100 x 15 cmAny bricolage convenience store
2 Trapezian acrilic laterals with 6-10 length x 15 cm heightAny bricolage convenience store
GitHub Materials
Folder nameURL
Boxplots to create Boxplots
Docs documents
Heatmap to create heatmap
Matlat script matlab script
PCA to perform Principal Component Analysis
Raw data Plots to create Raw data plots
Residual Analysis to compute residuals from Raw data

  1. Frigon, A. The neural control of interlimb coordination during mammalian locomotion. Journal of Neurophysiology. 117 (6), 2224-2241 (2017).
  2. Grillner, S. Biological pattern generation: The cellular and computational logic of networks in motion. Neuron. 52 (5), 751-766 (2006).
  3. Dominici, N., et al. locomotor primitives in newborn babies and their development. Science. 334 (6058), 997-999 (2011).
  4. Courtine, G., et al. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). Journal of Neurophysiology. 93 (6), 3127-3145 (2005).
  5. Clarac, F., Cattaert, D., le Ray, D. Central control components of a 'simple' stretch reflex. Trends Neuroscience. 23 (5), 199-208 (2000).
  6. Squair, J. W., Gautier, M., Sofroniew, M. V., Courtine, G., Anderson, M. A. Engineering spinal cord repair. Current Opinion in Biotechnology. 72, 48-53 (2021).
  7. Wenger, N., et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nature Medicine. 22 (2), 138-145 (2016).
  8. Grillner, S. The spinal locomotor CPG: A target after spinal cord injury. Progress in Brain Research. 137, 97-108 (2002).
  9. Boulain, M., et al. Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion. Journal of Physiology. 599 (19), 4477-4496 (2021).
  10. Skarlatou, S., et al. Afadin signaling at the spinal neuroepithelium regulates central canal formation and gait selection. Cell Reports. 31 (10), 107741 (2020).
  11. Viala, D., Vidal, C. Evidence for distinct spinal locomotion generators supplying respectively fore-and hindlimbs in the rabbit. Brain Research. 155 (1), 182-186 (1978).
  12. Silver, J., Miller, J. H. Regeneration beyond the glial scar. Nature Reviews Neuroscience. 5 (2), 146-156 (2004).
  13. Basso, D. M., Beattie, M. S., Bresnahan, J. C. A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of Neurotrauma. 12 (1), 1-21 (1995).
  14. Basso, D. M., et al. Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma. 23 (5), 635-659 (2006).
  15. Jones, B. J., Roberts, D. J. The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. Journal of Pharmacy and Pharmacology. 20 (4), 302-304 (1968).
  16. Metz, G. A., Whishaw, I. Q. The ladder rung walking task: A scoring system and its practical application. Journal of Visualized Experiments. (28), e1204 (2009).
  17. Metz, G. A., Whishaw, I. Q. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: A new task to evaluate fore-and hindlimb stepping, placing, and coordination. Journal of Neuroscience Methods. 115 (2), 169-179 (2002).
  18. Wallace, J. E., Krauter, E. E., Campbell, B. A. Motor and reflexive behavior in the aging rat. Journal of Gerontology. 35 (3), 364-370 (1980).
  19. Carter, R. J., et al. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. The Journal of Neuroscience. 19 (8), 3248-3257 (1999).
  20. Leblond, H., L'espérance, M., Orsal, D., Rossignol, S. Behavioral/systems/cognitive treadmill locomotion in the intact and spinal mouse. The Journal of Neuroscience. 23 (36), 11411-11419 (2003).
  21. Courtine, G., et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine. 14 (1), 69-74 (2008).
  22. Hamers, F. P. T., Koopmans, G. C., Joosten, E. A. J. CatWalk-assisted gait analysis in the assessment of spinal cord injury. Journal of Neurotrauma. 23 (3-4), 537-548 (2006).
  23. Mendes, C. S., et al. Quantification of gait parameters in freely walking rodents. BMC Biology. 13 (1), 50 (2015).
  24. Schindelin, J., et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  25. Stauch, K. L., et al. Applying the ratwalker system for gait analysis in a genetic rat model of Parkinson's disease. Journal of Visualized Experiments. (167), e62002 (2021).
  26. Mendes, C. S., Rajendren, S. V., Bartos, I., Márka, S., Mann, R. S. Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster. PLoS One. 9 (10), e109204 (2014).
  27. Cabrita, A., et al. Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience. 25 (7), 104541 (2022).
  28. Bishop, C. M. . Pattern Recognition and Machine Learning. , (2006).
  29. vander Maaten, L., Postma, E., vanden Herik, J. . Dimensionality reduction: A comparative review. , (2009).
  30. Courtine, G., et al. Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain. 128 (10), 2338-2358 (2005).
  31. Drew, T., Jiang, W., Kably, B., Lavoie, S. Role of the motor cortex in the control of visually triggered gait modifications. Canadian Journal of Physiology and Pharmacology. 74 (4), 426-442 (1996).
  32. Cheng, H., et al. Gait analysis of adult paraplegic rats after spinal cord repair. Experimental Neurology. 148 (2), 544-557 (1997).
  33. Thibaudier, Y., et al. Interlimb coordination during tied-belt and transverse split-belt locomotion before and after an incomplete spinal cord injury. Journal of Neurotrauma. 34 (9), 1751-1765 (2017).
  34. Bellardita, C., Kiehn, O. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Current Biology. 25 (11), 1426-1436 (2015).
  35. Machado, A. S., Marques, H. G., Duarte, D. F., Darmohray, D. M., Carey, M. R. Shared and specific signatures of locomotor ataxia in mutant mice. eLife. 9, 55356 (2020).
  36. Takeoka, A., Vollenweider, I., Courtine, G., Arber, S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell. 159 (7), 1626-1639 (2014).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved