JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Hickman Catheter Use for Long-Term Vascular Access in a Preclinical Swine Model

Published: March 31st, 2023

DOI:

10.3791/65221

1Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, 2Department of Molecular and Comparative Pathobiology, Research Animal Resources, Johns Hopkins University School of Medicine

A reliable and reproducible approach for the insertion and maintenance of a tunneled Hickman catheter for long-term vascular access in swine is described. Placement of a central venous catheter allows for convenient daily sampling of whole blood from awake animals and intravenous administration of medication and fluids.

Central venous catheters (CVCs) are invaluable devices in large animal research as they facilitate a wide range of medical applications, including blood monitoring and reliable intravenous fluid and drug administration. Specifically, the tunneled multi-lumen Hickman catheter (HC) is commonly used in swine models due to its lower extrication and complication rates. Despite fewer complications relative to other CVCs, HC-related morbidity presents a significant challenge, as it can significantly delay or otherwise negatively impact ongoing studies. The proper insertion and maintenance of HCs is paramount in preventing these complications, but there is no consensus on best practices. The purpose of this protocol is to comprehensively describe an approach for the insertion and maintenance of a tunneled HC in swine that mitigates HC-related complications and morbidity. The use of these techniques in >100 swine has resulted in complication-free patent lines up to 8 months and no catheter-related mortality or infection of the ventral surgical site. This protocol offers a method to optimize the lifespan of the HC and guidance for approaching issues during use.

The indispensable role of central venous catheters (CVCs) in patient care is owed to their convenience, favorable safety profile, and versatility1. Functions of a CVC include reliable access for total parenteral nutrition, hematopoietic stem cell transplantation, plasmapheresis/apheresis, and efficient fluid, blood, or co-drug administration2. In veterinary medicine, CVCs also minimize animal discomfort via the rapid dilution of irritant drugs and blood sampling without repeated venipuncture3. Despite their broad applications, the use of CVCs in large animal research still presents severa....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal procedures were conducted in accordance with an animal protocol approved by the Johns Hopkins University Institutional Animal Care and Use Committee (IACUC). Strains of male and female swine undergoing HC placement include miniature swine from the Massachusetts General Hospital (MGH) swine colony, Yucatan swine, and Yorkshire-crossed swine from an agricultural vendor (20-40 kg). Swine ranged from 3-10 months of age when the HC was placed. The HC may be placed anytime relative to the animal's experimental p.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Over 100 swine have undergone successful HC insertion in our lab. The HC can be safely and correctly placed and secured in under 1 h with a surgeon, assistant, circulator, and anesthetist. The catheter pouch takes roughly 15-20 min to make. The technique is straightforward and easy to teach and has been performed by veterinarians, surgical residents, and medical students following supervised instructions.

HCs have remained in place without complications or revision for up to 8 months. In a rec.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

While CVCs serve a spectrum of functions in large animal research, current literature lacks a consensus approach for safe and sustainable use in long-term trials over 30 days. This protocol's stepwise procedure for HC insertion, skin securement, and storage in a handmade pouch has undergone significant adjustments for quality improvement. As such, this protocol presents a technique for HC use that permits efficient and effective intravenous access while ensuring animal welfare and minimizing complications.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We would like to acknowledge the support of the Army, Navy NIH, Air Force, VA, and Health Affairs regarding the AFIRM II effort under award CTA05: W81XWH-13-2-0052 and CTA06: W81XWH-13-2-0053. The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014, is the awarding and administering acquisition office. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. In addition, we would like to acknowledge support from the Department of Defense Congressionally Directed Medical Research Programs (CDMRP), Reconstructive Transplantation Research ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
#10 blade Medline MDS15110
0.9% Sterile Sodium Chloride Baxter  2F7123
0-0 Coated and Braided Nonabsorbable Suture Covidien S-196
0-0 Synthetic, Monofilament, Nonabsorbable Polypropylene Suture Ethicon 8690H
1 inch Medical Tape 3M 1548S-1
10 USP units/mL Heparin flush Becton, Dickinson and Company 306424
3-0 Braided Absorbable Suture Covidien SL-636 (cutting needle), GL-122 (taper needle)
3-0 Monofilament Absorbable Suture Covidien SM-922 (cutting needle), CM-882 (taper needle)
4-0 Coated and Braided Non-absorbable Suture Ties Ethicon A303H
70% Ethanol Vedco VINV-IPA7
Adson tissue forceps MPM Medical Supply 132-508
Adson-Brown forceps MPM Medical Supply 106-2572
Air warming blanket and pad 3M Bair Hugger UPC 00608223595770
Backhaus towel clamp MPM Medical Supply 117-5508
Brown needle holder MPM Medical Supply 110-1513
Buprenorphine PAR Pharmaceutical 3003408B
Cefazolin Hikma Farmacuetica (Portugal) PLB 133-WES/1
Chlorhexidine Vet One 501027
Clave Baxter 7N8399
Cotton Padding Medline NON6027
Debakey forceps MPM Medical Supply 106-5015
Elastic Adhesive Bandage Tape 3M XH002016489
Halstead mosquito forceps MPM Medical Supply 115-4612
Hickman Catheter Bard Access Systems 603710
Hickman Catheter Repair Kit, 7Fr, Red and White Connectors Bard Access Systems 0601690 (red), 0601680 (white), 502017
Kelly hemostatic forceps MPM Medical Supply 115-7014
Ketamine Vet One 383010-03
Lactated Ringers Baxter 2B2324X
Maropitant Citrate Zoetis 106
Mayo scissors MPM Medical Supply 103-5014
Metzenbaum scissors MPM Medical Supply 132-711
Pantoprazole JH Pharmacy NDC 0143-9284-10
Scalpel blade handle Medline MDS10801
Vein Pick SAI infusion technologies VP-10
Veterinary Ophthalmic Ointment Dechra IS4398
Xylazine Vet One 510004

  1. Pontes, L., et al. Incidents related to the Hickman® catheter: identification of damages. Revista Brasileira de Enfermagem. 71 (4), 1915-1920 (2018).
  2. Kolikof, J., Peterson, K., Baker, A. M. Central Venous Catheter. StatPearls. , (2022).
  3. Central venous catheters: how, when, why? (Proceedings). DVM 360 Available from: https://www.dvm360.com/view/central-venous-catheters-how-when-why-proceedings (2011)
  4. Abrams-Ogg, A. C., et al. The use of an implantable central venous (Hickman) catheter for long-term venous access in dogs undergoing bone marrow transplantation. Canadian Journal of Veterinary Research. 56 (4), 382-386 (1992).
  5. Florescu, M. C., et al. Surgical technique of placement of an external jugular tunneled hemodialysis catheter in a large pig model. The Journal of Vascular Access. 19 (5), 473-476 (2018).
  6. . Central Venous Catheter Placement: Modified Seldinger Technique Available from: https://www.cliniciansbrief.com/article/central-venous-catheter-placement-modified-seldinger-technique (2015)
  7. Perondi, F., et al. Bacterial colonization of non-permanent central venous catheters in hemodialysis dogs. Heliyon. 6 (1), e03224 (2020).
  8. Faulkner, R. T., Czajkowski, W. P., Rayfield, E. J., Hickman, R. L. Technique for portal catheterization in rhesus monkeys (Macaca mulatta). American Journal of Veterinary Research. 37 (4), 473-475 (1976).
  9. Moss, J. G., et al. Central venous access devices for the delivery of systemic anticancer therapy (CAVA): a randomised controlled trial. Lancet. 398 (10298), 403-415 (2021).
  10. Dai, C., et al. Effect of tunneled and nontunneled peripherally inserted central catheter placement: A randomized controlled trial. The Journal of Vascular Access. 21 (4), 511-519 (2020).
  11. Wu, X., et al. Tunneled peritoneal catheter vs repeated paracenteses for recurrent ascites: a cost-effectiveness analysis. Cardiovascular and Interventional Radiology. 45 (7), 972-982 (2022).
  12. Onwubiko, C., et al. Small tunneled central venous catheters as an alternative to a standard hemodialysis catheter in neonatal patients. Journal of Pediatric Surgery. 56 (12), 2219-2223 (2021).
  13. da Silva, S. R., Reichembach, M. T., Pontes, L., de Souza, G. d. e. P. E. S. C. M., Kusma, S. Heparin solution in the prevention of occlusions in Hickman® catheters a randomized clinical trial. Revista Latino-Americana de Enfermagem. 29, e3385 (2021).
  14. Landoy, Z., Rotstein, C., Lucey, J., Fitzpatrick, J. Hickman-Broviac catheter use in cancer patients. Journal of Surgical Oncology. 26 (4), 215-218 (1984).
  15. Bawazir, O. A., Altokhais, T. I. Hickman central venous catheters in children: open versus percutaneous technique. Annals of Vascular Surgery. 68, 209-216 (2020).
  16. Cappello, M., et al. Central venous access for haemodialysis using the Hickman catheter. Nephrology Dialysis Transplantation. 4 (11), 988-992 (1989).
  17. Shastri, L., Kjærgaard, B., Rees, S. E., Thomsen, L. P. Changes in central venous to arterial carbon dioxide gap (PCO2 gap) in response to acute changes in ventilation. BMJ Open Respiratory Research. 8 (1), e000886 (2021).
  18. Smith, A. C., Swindle, M. M. Preparation of swine for the laboratory. ILAR Journal. 47 (4), 358-363 (2006).
  19. Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J., Frazier, K. S. Swine as models in biomedical research and toxicology testing. Veterinary Pathology. 49 (2), 344-356 (2012).
  20. Hughes, H. C. Swine in cardiovascular research. Laboratory Animal Science. 36 (4), 348-350 (1986).
  21. Svendsen, O. The minipig in toxicology. Experimental and Toxicologic Pathology. 57 (5-6), 335-339 (2006).
  22. Tumbleson, M. E., Schook, L. B. . Advances in Swine in Biomedical Research. 2, (1996).
  23. Jensen-Waern, M., Kruse, R., Lundgren, T. Oral immunosuppressive medication for growing pigs in transplantation studies. Laboratory Animals. 46 (2), 148-151 (2012).
  24. Ibrahim, Z., et al. A modified heterotopic swine hind limb transplant model for translational vascularized composite allotransplantation (VCA) research. Journal of Visualized Experiments. (80), e50475 (2013).
  25. Nordström, C. -. H., Jakobsen, R., Mølstrøm, S., Nielsen, T. H. Cerebral venous blood is not drained via the internal jugular vein in the pig. Resuscitation. 162, 437-438 (2021).
  26. Habib, C. A., et al. MR imaging of the yucatan pig head and neck vasculature. Journal of Magnetic Resonance Imaging. 38 (3), 641-649 (2013).
  27. Flournoy, W. S., Mani, S. Percutaneous external jugular vein catheterization in piglets using a triangulation technique. The International Journal of Laboratory Animals. 43 (4), 344-349 (2009).
  28. Kotsougiani, D., et al. Surgical angiogenesis in porcine tibial allotransplantation: a new large animal bone vascularized composite allotransplantation model. Journal of Visualized Experiments. (126), e55238 (2017).
  29. Chuang, M., et al. Comparison of external catheters with subcutaneous vascular access ports for chronic vascular access in a porcine model. Contemporary Topics in Laboratory Animal Science. 44 (2), 24-27 (2005).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved