JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

محاذاة الألياف المقطعية للتماسك البصري للضوء المرئي مع الصور متحدة البؤر لشبكية العين للماوس نفسه

Published: June 30th, 2023

DOI:

10.3791/65237

1Department of Biology, University of Virginia, 2Department of Biomedical Engineering, Northwestern University, 3Department of Ophthalmology, University of Virginia, 4Program in Fundamental Neuroscience, University of Virginia, 5Department of Psychology, University of Virginia

يحدد هذا البروتوكول خطوات محاذاة صور التصوير المقطعي للتماسك البصري للضوء المرئي في الجسم الحي (vis-OCTF) مع الصور متحدة البؤر خارج الجسم الحي لشبكية العين نفسها لغرض التحقق من مورفولوجيا الحزمة المحورية لخلية العقدة العقدية المرصودة في الصور في الجسم الحي .

في السنوات الأخيرة ، تم تطبيق تصوير الشبكية في الجسم الحي ، والذي يوفر معلومات غير جراحية وفي الوقت الفعلي وطولية حول الأنظمة والعمليات البيولوجية ، بشكل متزايد للحصول على تقييم موضوعي للتلف العصبي في أمراض العيون. غالبا ما يكون التصوير البؤري خارج الجسم الحي لنفس شبكية العين ضروريا للتحقق من صحة النتائج في الجسم الحي خاصة في الأبحاث على. في هذه الدراسة ، أظهرنا طريقة لمحاذاة صورة متحدة البؤر خارج الجسم الحي لشبكية العين مع صورها في الجسم الحي . تم تطبيق تقنية تصوير جديدة جاهزة سريريا تسمى الألياف المقطعية للتماسك البصري للضوء المرئي (vis-OCTF) للحصول على صور في الجسم الحي لشبكية الفأر. ثم أجرينا التصوير متحد البؤر لشبكية العين نفسها مثل "المعيار الذهبي" للتحقق من صحة الصور في الجسم الحي مقابل OCTF. لا تتيح هذه الدراسة مزيدا من التحقيق في الآليات الجزيئية والخلوية فحسب ، بل تضع أيضا أساسا لتقييم حساس وموضوعي للتلف العصبي في الجسم الحي.

تلعب خلايا العقدة الشبكية (RGCs) دورا مهما في معالجة المعلومات المرئية ، حيث تتلقى مدخلات متشابكة من خلال أشجارها المتغصنة في الطبقة الضفيرية الداخلية (IPL) وتنقل المعلومات عبر محاورها في طبقة الألياف العصبية الشبكية (RNFL) إلى الدماغ1،2،3،4. في الحالات المريضة مثل الجلوكوما ، قد يؤدي تنكس RGC المبكر إلى تغييرات طفيفة في RNFL ، وطبقة الخلايا العقدية (GCL) ، و IPL ، والعصب البصري في كل من المرضى ونماذج القوارض5،6،7،8

Log in or to access full content. Learn more about your institution’s access to JoVE content here

تمت الموافقة على جميع الإجراءات الحيوانية من قبل لجنة رعاية واستخدام المؤسسية في جامعة فيرجينيا وتتوافق مع المبدأ التوجيهي بشأن استخدام من المعهد الوطني للصحة (NIH). راجع جدول المواد للحصول على التفاصيل المتعلقة بجميع المواد والكواشف والأدوات المستخدمة في هذا البروتوكول.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

تمت مقارنة المركب مقابل الألياف OCT مع الصورة البؤرية المقابلة لشبكية العين المثبتة بشكل مسطح والمناعية مع Tuj-1 لمحاور RGC (الشكل 1D ، اللوحة العلوية). يمكن مطابقة الحزم المحورية المصورة بواسطة vis-OCTF مع الحزم المحورية التي تحمل علامة Tu-j1 على الصورة متحدة البؤر. عادة ما تظهر الأوع.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

هناك خطوتان في هذا البروتوكول تتطلبان الاهتمام. أولا ، من الضروري التأكد من أن يخضع للتخدير العميق وأن عيونه متوسعة بالكامل قبل التصوير المقطعي المحوسب. إذا لم يتم تخدير الفئران بشكل كاف ، فقد يؤدي تنفسها السريع إلى حركات غير مستقرة لصور الوجه ، مما قد يؤثر سلبا على جودة الألياف. علاو?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

هذه الدراسة مدعومة من قبل مؤسسة أبحاث الجلوكوما شافير جرانت ، وجائزة 4-CA Cavalier التعاونية ، R01EY029121 ، R01EY035088 ، ومؤسسة Knights Templar Eye.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Equipment
Halo 100Opticent Health, Evanston, IL
Zeiss LSM800 microscopeCarl Zeiss
Drugs and antibodies
4% paraformaldehyde (PFA)Santz Cruz Biotechnology, SC-2816921-2 drops
Bovine serum albumin powderFisher Scientific, BP9706-1001:10
Donkey anti Mouse Alexa Fluor 488 dyeThermo Fisher Scientific, Cat# A-212021:1,000
Donkey anti rat Alexa Fluor 594 dyeThermo Fisher Scientific, Cat# A-212091:1,000
Euthasol (a mixture of pentobarbital sodium (390 mg/mL) and phenytoin sodium (50 mg/mL))Covetrus, NDC 11695-4860-115.6 mg/mL
KetamineCovetrus, NADA043304114 mg/kg
Mouse anti-Tuj1A gift from Anthony J. Spano, University of Virginia1:200
Normal donkey serum(NDS)Millipore Sigma, S30-100 mL1:100
Phosphate-buffered saline (PBS, 10x), pH 7.4
(Contains 1370 mM NaCl, 27 mM KCl, 80 mM Na2HPO4, and 20 mM KH2PO4)
Thermo Fisher Scientific, Cat# J62036.K31:10
Rat anti-ICAM-2BD Pharmingen, Cat#5533251:500
Tropicamide drops Covetrus, NDC17478-102-12
Triton X-100
(Reagent Grade)
VWR, CAS: 9002-93-11:20
Vectashield mounting mediumVector Laboratories Inc. H2000-10
XylazineCovetrus, NDC59399-110-2017 mg/kg

  1. Sernagor, E., Eglen, S. J., Wong, R. O. Development of retinal ganglion cell structure and function. Progress in Retinal and Eye Research. 20 (2), 139-174 (2001).
  2. Sanes, J. R., Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience. 38, 221-246 (2015).
  3. Seabrook, T. A., Burbridge, T. J., Crair, M. C., Huberman, A. D. Architecture, function, and assembly of the mouse visual system. Annual Review of Neuroscience. 40, 499-538 (2017).
  4. Cang, J., Savier, E., Barchini, J., Liu, X. Visual function, organization, and development of the mouse superior colliculus. Annual Review of Vision Science. 4, 239-262 (2018).
  5. Quigley, H. A. Understanding glaucomatous optic neuropathy: the synergy between clinical observation and investigation. Annual Review of Vision Science. 2, 235-254 (2016).
  6. Whitmore, A. V., Libby, R. T., John, S. W. Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes. Progress in Retinal and Eye Research. 24 (6), 639-662 (2005).
  7. Syc-Mazurek, S. B., Libby, R. T. Axon injury signaling and compartmentalized injury response in glaucoma. Progress in Retinal and Eye Research. 73, 100769 (2019).
  8. Puyang, Z., Chen, H., Liu, X. Subtype-dependent morphological and functional degeneration of retinal ganglion cells in mouse models of experimental glaucoma. Journal of Nature and Science. 1 (5), (2015).
  9. Tatham, A. J., Medeiros, F. A. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology. 124, S57-S65 (2017).
  10. Shu, X., Beckmann, L., Zhang, H. Visible-light optical coherence tomography: a review. Journal of Biomedical Optics. 22 (12), 1-14 (2017).
  11. Miller, D. A., et al. Visible-light optical coherence tomography fibergraphy for quantitative imaging of retinal ganglion cell axon bundles. Translational Vision Science and Technology. 9 (11), (2020).
  12. Beckmann, L., et al. In vivo imaging of the inner retinal layer structure in mice after eye-opening using visible-light optical coherence tomography. Experimental Eye Research. 211, 108756 (2021).
  13. Grannonico, M., et al. Global and regional damages in retinal ganglion cell axon bundles monitored non-invasively by visible-light optical coherence tomography fibergraphy. Journal of Neuroscience. 41 (49), 10179-10193 (2021).
  14. Allen-Worthington, K. H., Brice, A. K., Marx, J. O., Hankenson, F. C. Intraperitoneal Injection of Ethanol for the Euthanasia of Laboratory Mice (Mus musculus) and Rats (Rattus norvegicus). J Am Assoc Lab Anim Sci. 54 (6), 769-778 (2015).
  15. Boivin, G. P., Bottomley, M. A., Schiml, P. A., Goss, L., Grobe, N. Physiologic, Behavioral, and Histologic Responses to Various Euthanasia Methods in C57BL/6NTac Male Mice. J Am Assoc Lab Anim Sci. 56 (1), 69-78 (2017).
  16. Chen, H., et al. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Investigative Ophthalmology and Visual Science. 56 (3), 1971-1984 (2015).
  17. Feng, L., Chen, H., Suyeoka, G., Liu, X. A laser-induced mouse model of chronic ocular hypertension to characterize visual defects. Journal of Visualized Experiments: JoVE. 78 (78), (2013).
  18. Gao, J., et al. Differential effects of experimental glaucoma on intrinsically photosensitive retinal ganglion cells in mice. Journal of Comparative Neurology. 530 (9), 1494-1506 (2022).
  19. Thomson, B. R., et al. Angiopoietin-1 knockout mice as a genetic model of open-angle glaucoma. Translational Vision Science and Technology. 9 (4), (2020).
  20. Feng, L., et al. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Investigative Ophthalmology and Visual Science. 54 (2), 1106-1117 (2013).
  21. Grannonico, M., et al. Longitudinal analysis of retinal ganglion cell damage at individual axon bundle level in mice using visible-light optical coherence tomography fibergraphy. Translational Vision Science and Technology. 12 (5), (2023).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved