JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Developmental Biology

Left Atrial Ligation in the Avian Embryo as a Model for Altered Hemodynamic Loading During Early Vascular Development

Published: June 16th, 2023

DOI:

10.3791/65330

1Department of Biomedical Sciences and Engineering, Koc University, 2Department of Mechanical Engineering, Koc University
* These authors contributed equally

Here, we present a detailed visual protocol for executing the left atrial ligation (LAL) model in the avian embryo. The LAL model alters the intracardiac flow, which changes wall shear stress loading, mimicking hypoplastic left heart syndrome. An approach to overcome the challenges of this difficult microsurgery model is presented.

Due to its four-chambered mature ventricular configuration, ease of culture, imaging access, and efficiency, the avian embryo is a preferred vertebrate animal model for studying cardiovascular development. Studies aiming to understand the normal development and congenital heart defect prognosis widely adopt this model. Microscopic surgical techniques are introduced to alter the normal mechanical loading patterns at a specific embryonic time point and track the downstream molecular and genetic cascade. The most common mechanical interventions are left vitelline vein ligation, conotruncal banding, and left atrial ligation (LAL), modulating the intramural vascular pressure and wall shear stress due to blood flow. LAL, particularly if performed in ovo, is the most challenging intervention, with very small sample yields due to the extremely fine sequential microsurgical operations. Despite its high risk, in ovo LAL is very valuable scientifically as it mimics hypoplastic left heart syndrome (HLHS) pathogenesis. HLHS is a clinically relevant, complex congenital heart disease observed in human newborns. A detailed protocol for in ovo LAL is documented in this paper. Briefly, fertilized avian embryos were incubated at 37.5 °C and 60% constant humidity typically until they reached Hamburger-Hamilton (HH) stages 20 to 21. The egg shells were cracked open, and the outer and inner membranes were removed. The embryo was gently rotated to expose the left atrial bulb of the common atrium. Pre-assembled micro-knots from 10-0 nylon sutures were gently positioned and tied around the left atrial bud. Finally, the embryo was returned to its original position, and LAL was completed. Normal and LAL-instrumented ventricles demonstrated statistically significant differences in tissue compaction. An efficient LAL model generation pipeline would contribute to studies focusing on synchronized mechanical and genetic manipulation during the embryonic development of cardiovascular components. Likewise, this model will provide a perturbed cell source for tissue culture research and vascular biology.

Congenital heart defects (CHDs) are structural disorders that occur due to abnormal embryonic development1. In addition to genetic conditions, the pathogenesis is influenced by altered mechanical loading2,3. Hypoplastic left heart syndrome (HLHS), a congenital heart disease, results in an underdeveloped ventricle/aorta at birth4 with a high rate of mortality5,6. Despite the recent advances in its clinical management, the vascular growth and development dynamics of HLHS are still unclear7....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Fertile white Leghorn eggs are obtained from trusted suppliers and incubated according to university-approved guidelines. Chick embryos, stages 18 (day 3) to 24 (day 4) (the stages presented in this paper) are not considered live vertebrate animals by the European Union (EU) directive 2010/63/EU and the institutional animal care and use committee (IACUC) guidelines in the US. Chick embryos are considered "live animals" after day 19 of incubation according to US laws, but not for the EU. Each egg is labeled with t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Advanced time-resolved imaging techniques can be employed to observe the structural and morphological changes due to LAL intervention10. Furthermore, LAL samples are also amenable to molecular and biological methods19,28. In Table 1, sample studies that employed LAL model results are provided. In this context, LAL intervention was performed in chick embryos that reached HH20-21. Both control (healthy) and LAL hearts were r.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In HLHS, blood flow is altered due to structural defects, leading to abnormal morphology on the left side4,6. The present model provides a practical experimental system to better understand the progression of HLHS and may even mimic its pathogenesis8. However, establishing a fully clinically equivalent HLHS animal model is a challenging task. In addition to the avian LAL model presented here, recent studies in mice, fetal sheep, and frogs .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We acknowledge Tubitak 2247A lead researcher award 120C139 providing funding. The authors would also like to thank PakTavuk Gıda. A. S., Istanbul, Turkey, for providing fertile eggs and supporting the cardiovascular research.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
10-0 nylon surgical suture Ethicon
Elastica van Gieson staining kit Sigma-Aldrich 115974 For staining connective tissues in histological sections
Ethanol absolute Interlab 64-17-5 For the sterilization step, 70% ethanol was obtained by diluting absolute ethanol with distilled water.
Incubator KUHL, Flemington, New Jersey-U.S.A AZYSS600-110
Kimwipes Interlab 080.65.002
Microscissors World Precision Instruments (WPI), Sarasota FL 555640S Vannas STR 82 mm
Parafilm M Sigma-Aldrich P7793-1EA Sealing stage for egg reincubation
Paraplast Bulk Leica Biosystems  39602012 Tissue embedding medium
Stereo Microscope Zeiss Stemi 508  Stemi 508 Used at station 1
Stereo Microscope Zeiss Stemi 2000-C Stemi 2000-C Used at station 2
Tweezer (Dumont 4 INOX #F4) Adumont & Fils, Switzerland Used to return the embryo
Tweezer (Super Fine Dumont #5SF)  World Precision Instruments (WPI), Sarasota FL 501985 Used to remove the membranes on the embryo

  1. Wang, T., et al. Congenital heart disease and risk of cardiovascular disease: A meta-analysis of cohort studies. Journal of the American Heart Association. 8 (10), e012030 (2019).
  2. Chaudhry, B., et al. The left ventricular myocardium in hypoplastic left heart syndrome. Journal of Cardiovascular Development and Disease. 9 (8), 279 (2022).
  3. Lashkarinia, S. S., Çoban, G., Ermek, E., Çelik, M., Pekkan, K. Spatiotemporal remodeling of embryonic aortic arch: stress distribution, microstructure, and vascular growth in silico. Biomechanics and Modeling in Mechanobiology. 19 (5), 1897-1915 (2020).
  4. Ho, S., Chan, W. X., Yap, C. H. Fluid mechanics of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome. Biomechanics and Modeling in Mechanobiology. 20 (4), 1337-1351 (2021).
  5. Gordon, B. M., Rodriguez, S., Lee, M., Chang, R. K. Decreasing number of deaths of infants with hypoplastic left heart syndrome. The Journal of Pediatrics. 153 (3), 354-358 (2008).
  6. Salman, H. E., et al. Effect of left atrial ligation-driven altered inflow hemodynamics on embryonic heart development: clues for prenatal progression of hypoplastic left heart syndrome. Biomechanics and Modeling in Mechanobiology. 20 (2), 733-750 (2021).
  7. Fruitman, D. S. Hypoplastic left heart syndrome: Prognosis and management options. Paediatrics & Child Health. 5 (4), 219-225 (2000).
  8. Rahman, A., Chaturvedi, R. R., Sled, J. G. Flow-mediated factors in the pathogenesis of hypoplastic left heart syndrome. Journal of Cardiovascular Development and Disease. 9 (5), 154 (2022).
  9. Henderson, D. J., Anderson, R. H. The development and structure of the ventricles in the human heart. Pediatric Cardiology. 30 (5), 588-596 (2009).
  10. Kowalski, W. J., Pekkan, K., Tinney, J. P., Keller, B. B. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Frontiers in Physiology. 5, 408 (2014).
  11. Midgett, M., Rugonyi, S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Frontiers in Physiology. 5, 287 (2014).
  12. Kowalski, W. J., et al. Left atrial ligation alters intracardiac flow patterns and the biomechanical landscape in the chick embryo. Developmental Dynamics. 243 (5), 652-662 (2014).
  13. Bruneau, B. G. The developmental genetics of congenital heart disease. Nature. 451 (7181), 943-948 (2008).
  14. Sedmera, D., et al. Cellular changes in experimental left heart hypoplasia. The Anatomical Record. 267 (2), 137-145 (2002).
  15. Celik, M., et al. Microstructure of early embryonic aortic arch and its reversibility following mechanically altered hemodynamic load release. American Journal of Physiology. Heart and Circulatory Physiology. 318 (5), H1208-H1218 (2020).
  16. Tobita, K., Schroder, E. A., Tinney, J. P., Garrison, J. B., Keller, B. B. Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. American Journal of Physiology. Heart and Circulatory Physiology. 282 (6), H2386-H2396 (2002).
  17. Alser, M., Shurbaji, S., Yalcin, H. C. Mechanosensitive pathways in heart development: findings from chick embryo studies. Journal of Cardiovascular Development and Disease. 8 (4), 32 (2021).
  18. Alser, M., et al. Blood flow disturbance and morphological alterations following the right atrial ligation in the chick embryo. Frontiers in Physiology. 13, 849603 (2022).
  19. Sedmera, D. HLHS: Power of the chick model. Journal of Cardiovascular Development and Disease. 9 (4), 113 (2022).
  20. Rychter, Z., Rychterová, V., Lemez, L. Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz. 4 (2), 86-90 (1979).
  21. Harh, J. Y., Paul, M. H., Gallen, W. J., Friedberg, D. Z., Kaplan, S. Experimental production of hypoplastic left heart syndrome in the chick embryo. The Americal Journal of Cardiology. 31 (1), 51-56 (1973).
  22. Sedmera, D., Pexieder, T., Rychterova, V., Hu, N., Clark, E. B. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. The Anatomical Record. 254 (2), 238-252 (1999).
  23. Karakaya, C., et al. Asymmetry in mechanosensitive gene expression during aortic arch morphogenesis. Scientific Reports. 8 (1), 16948 (2018).
  24. Trinidad, F., et al. Effect of blood flow on cardiac morphogenesis and formation of congenital heart defects. Journal of Cardiovascular Development and Disease. 9 (9), 303 (2022).
  25. Tobita, K., Keller, B. B. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. American Journal of Physiology. Heart and Circulatory Physiology. 279 (3), H959-H969 (2000).
  26. Bortecine, S., Merve Nur, C., Faruk, K., Kerem, P. Auxiliary humidifier system design and construction for research grade egg incubators. Zenodo. , (2023).
  27. Schroder, E. A., Tobita, K., Tinney, J. P., Foldes, J. K., Keller, B. B. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circulation Research. 91 (4), 353-359 (2002).
  28. Rufaihah, A. J., Chen, C. K., Yap, C. H., Mattar, C. N. Z. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Disease Models & Mechanisms. 14 (3), (2021).
  29. Siddiqui, H. B., Dogru, S., Lashkarinia, S. S., Pekkan, K. Soft-tissue material properties and mechanogenetics during cardiovascular development. Journal of Cardiovascular Development and Disease. 9 (2), 64 (2022).
  30. Pesevski, Z., et al. Endocardial fibroelastosis is secondary to hemodynamic alterations in the chick embryonic model of hypoplastic left heart syndrome. Developmental Dynamics. 247 (3), 509-520 (2018).
  31. Hu, N., et al. Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. Anatomical Record. 292 (5), 652-660 (2009).
  32. Lashkarinia, S. S., et al. Myocardial biomechanics and the consequent differentially expressed genes of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome. Annals of Biomedical Engineering. 51 (5), 1063-1078 (2023).
  33. Krejčí, E., et al. Microarray analysis of normal and abnormal chick ventricular myocardial development. Physiological Research. 61, S137-S144 (2012).
  34. Rahman, A., et al. A mouse model of hypoplastic left heart syndrome demonstrating left heart hypoplasia and retrograde aortic arch flow. Disease Models & Mechanisms. 14 (11), (2021).
  35. Fishman, N. H., Hof, R. B., Rudolph, A. M., Heymann, M. A. Models of congenital heart disease in fetal lambs. Circulation. 58 (2), 354-364 (1978).
  36. Wong, F. Y., et al. Induction of left ventricular hypoplasia by occluding the foramen ovale in the fetal lamb. Scientific Reports. 10 (1), 880 (2020).
  37. Nie, S. Use of frogs as a model to study the etiology of HLHS. Journal of Cardiovascular Development and Disease. 10 (2), 51 (2023).
  38. Vilches-Moure, J. G. Embryonic chicken (Gallus gallus domesticus) as a model of cardiac biology and development. Comparative Medicine. 69 (3), 184-203 (2019).
  39. Kain, K. H., et al. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Developmental Dynamics. 243 (2), 216-228 (2014).
  40. Sukparangsi, W., Thongphakdee, A., Intarapat, S. Avian embryonic culture: A perspective of in ovo to ex ovo and in vitro studies. Frontiers in Physiology. 13, 903491 (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved