JoVE Logo
Faculty Resource Center

Sign In





Representative Results






New Framework for Understanding Cross-Brain Coherence in Functional Near-Infrared Spectroscopy (fNIRS) Hyperscanning Studies

Published: October 6th, 2023



1The Department of Behavioral Sciences and Psychology, Ariel University, 2Braude College of Engineering, 3Department of Psychology and Behavioral Sciences, Zhejiang University, 4Department of Psychology, Florida Atlantic University

Wavelet transform coherence (WTC) is a common methodology for assessing the coupling between signals that is used in functional near-infrared spectroscopy (fNIRS) hyperscanning studies. A toolbox for assessing the directionality of the signal interaction is presented in this work.

Despite the growing body of functional near-infrared spectroscopy (fNIRS) hyperscanning studies, the assessment of coupling between two neural signals using wavelet transform coherence (WTC) seems to ignore the directionality of the interaction. The field is currently lacking a framework that allows researchers to determine whether a high coherence value obtained using a WTC function reflects in-phase synchronization (i.e., neural activation is seen in both members of the dyad at the same time), lagged synchronization (i.e., neural activation is seen in one member of the dyad prior to the other member), or anti-phase synchronization (i.e., neural activation is increased in one member of the dyad and decreased in the other). To address this need, a complementary and more sensitive approach for analyzing the phase coherence of two neural signals is proposed in this work. The toolbox allows investigators to estimate the coupling directionality by classifying the phase angle values obtained using traditional WTC into in-phase synchronization, lagged synchronization, and anti-phase synchronization. The toolbox also allows researchers to assess how the dynamics of interactions develop and change throughout the task. Using this novel WTC approach and the toolbox will advance our understanding of complex social interactions through their uses in fNIRS hyperscanning studies.

In recent years, there has been a shift in the types of studies conducted to understand the neural bases of social behavior1,2. Traditionally, studies in social neuroscience have focused on neural activation in one isolated brain during a socially relevant task. However, advances in neuroimaging technology now allow for the examination of neural activation in the brains of one or more individuals during social interaction as it occurs in "real-life" settings3. In "real-life" settings, individuals are able to move freely, and patterns of brain activation are likely to cha....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The study was conducted at Florida Atlantic University (FAU) and was approved by the FAU Institutional Review Board (IRB).

1. Using Homer3 software (Table of Materials) to perform the pre-processing of the fNIRS hyperscanning data

NOTE: Homer3 is a MATLAB application that analyzes fNIRS data to obtain estimates and maps of brain activation29. Homer3 can be downloaded and installed from the following link (

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This section demonstrates the types of analyses that can be carried out with the toolbox (which can be downloaded at or For these analyses, fNIRS data collected with a small sample of infant-parent dyads were utilized. Six pairs of mother-infant dyads were tested using a validated behavioral task, the free-play task31, which is as close to a real-life infant-mother interaction as possible. Prior to .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

One of the most common methods used in fNIRS studies is wavelet transform coherence (WTC), which is a measure of the cross-correlation of two time series as a function of frequency and time10. WTC calculates the coherence and phase lag between two time series using correlational analyses (Supplementary File 1). FNIRS hyperscanning studies have used WTC to estimate IBS in many domains of functioning, including action monitoring12, cooperative and competitive.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We would like to acknowledge the support provided by the National Natural Science Foundation of China (No. 62207025), the Humanities and Social Sciences Research Project from the Ministry of Education of China (No. 22YJC190017), and the Fundamental Research Funds for the Central Universities to Yafeng Pan.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
NIRScout  NIRx Medical Technologies, LLCn.a.8 sources, 8 detectors
MATLABThe Mathworks, Inc.Matlab 2022aIn this protocol, several toolboxes and buit in MATLAB functions were used: HOMER3 toolbox was used to convert Intensity to OD, to remove motion artifacts through its function hmrMotionCorrectWavelet with default parameters and to convert OD to Conc. Wavelet Toolbox was used to compute WTC.

  1. Gvirts, H. Z., Perlmutter, R. What guides us to neurally and behaviorally align with anyone specific? A neurobiological model based on fNIRS hyperscanning studies. The Neuroscientist. 26 (2), 108-116 (2019).
  2. Balconi, M., Fronda, G., Vanutelli, M. E. Donate or receive? Social hyperscanning application with fNIRS. Current Psychology. 38 (4), 991-1002 (2019).
  3. Redcay, E., Schilbach, L. Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience. 20 (8), 495-505 (2019).
  4. Shamay-Tsoory, S. G., Mendelsohn, A. Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science. 14 (5), 841-859 (2019).
  5. Cui, X., Bryant, D. M., Reiss, A. L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage. 59 (3), 2430-2437 (2012).
  6. Quaresima, V., Ferrari, M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: A concise review. Organizational Research Methods. 22 (1), 46-68 (2016).
  7. Fishburn, F. A., et al. Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Social Cognitive and Affective Neuroscience. 13 (8), 841-849 (2018).
  8. Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., Keysers, C. Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences. 16 (2), 114-121 (2012).
  9. Chang, C., Glover, G. H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage. 50 (1), 81-98 (2010).
  10. Scholkmann, F., Holper, L., Wolf, U., Wolf, M. A new methodical approach in neuroscience: Assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience. 7, 813 (2013).
  11. Czeszumski, A., et al. Hyperscanning: A valid method to study neural inter-brain underpinnings of social interaction. Frontiers in Human Neuroscience. 14, 39 (2020).
  12. Dommer, L., Jäger, N., Scholkmann, F., Wolf, M., Holper, L. Between-brain coherence during joint n-back task performance: A two-person functional near-infrared spectroscopy study. Behavioural Brain Research. 234 (2), 212-222 (2012).
  13. Osaka, N., Minamoto, T., Yaoi, K., Azuma, M., Osaka, M. Neural synchronization during cooperated humming: A hyperscanning study using fNIRS. Procedia - Social and Behavioral Sciences. 126, 241-243 (2014).
  14. Wang, C., Zhang, T., Shan, Z., Liu, J., Yuan, D., Li, X. Dynamic interpersonal neural synchronization underlying pain-induced cooperation in females. Human Brain Mapping. 40 (11), 3222-3232 (2019).
  15. Cheng, X., Li, X., Hu, Y. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Human Brain Mapping. 36 (6), 2039-2048 (2015).
  16. Holper, L., Scholkmann, F., Wolf, M. Between-brain connectivity during imitation measured by fNIRS. NeuroImage. 63 (1), 212-222 (2012).
  17. Nguyen, T., et al. The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex. 124, 235-249 (2020).
  18. Zheng, L., et al. Enhancement of teaching outcome through neural prediction of the students' knowledge state. Human Brain Mapping. 39 (7), 3046-3057 (2018).
  19. Pan, Y., Novembre, G., Song, B., Li, X., Hu, Y. Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. NeuroImage. 183, 280-290 (2018).
  20. Pan, Y., et al. Instructor-learner brain coupling discriminates between instructional approaches and predicts learning. NeuroImage. 211, 116657 (2020).
  21. Liu, J., et al. Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. NeuroImage. 193, 93-102 (2019).
  22. Léné, P., et al. Wavelet transform coherence: An innovative method to investigate social interaction in NeuroIS. Lecture Notes in Information Systems and Organisation. 32, 147-154 (2020).
  23. Nguyen, T., Hoehl, S., Vrtička, P. A guide to parent-child fNIRS hyperscanning data processing and analysis. Sensors. 21 (12), 4075 (2021).
  24. Zhang, Y., Han, J., Hu, X., Guo, L., Liu, T. Data-driven evaluation of functional connectivity metrics. Proceedings - International Symposium on Biomedical Imaging. , 532-535 (2013).
  25. Hamilton, A. F. d. e. C. Hyperscanning: Beyond the hype. Neuron. 109 (3), 404-407 (2021).
  26. Barnett, L., Barrett, A. B., Granger Seth, A. K. causality and transfer entropy are equivalent for Gaussian variables. Physical Review Letters. 103 (23), 2-5 (2009).
  27. Barnett, L., Seth, A. K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. Journal of Neuroscience Methods. 223, 50-68 (2014).
  28. Li, D., Zhou, C. Organization of anti-phase synchronization pattern in neural networks: What are the key factors. Frontiers in Systems Neuroscience. 5, 100 (2011).
  29. Huppert, T. J., Diamond, S. G., Franceschini, M. A., Boas, D. A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics. 48 (10), D280-D298 (2009).
  30. Grinsted, A., Moore, J. C., Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 11 (5-6), 561-566 (2004).
  31. Feldman, R. Parent-infant synchrony. Current Directions in Psychological Science. 16 (6), 340-345 (2007).
  32. Fell, J., Axmacher, N. The role of phase synchronization in memory processes. Nature Reviews Neuroscience. 12 (2), 105-118 (2011).
  33. Olcay, B. O., Karaçalı, B. Evaluation of synchronization measures for capturing the lagged synchronization between EEG channels: A cognitive task recognition approach. Computers in Biology and Medicine. 114, 103441 (2019).
  34. Stam, C. J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology. 116 (10), 2266-2301 (2005).
  35. Mallat, S. . A Wavelet Tour of Signal Processing. , (2009).
  36. Kleinbub, J. R., Ramseyer, F. T. . rMEA: An R package to assess nonverbal synchronization in motion energy analysis time-series. 31 (6), 817-830 (2020).
  37. Pan, Y., Novembre, G., Song, B., Zhu, Y., Hu, Y. Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Social Cognitive and Affective Neuroscience. 16 (1-2), 210-221 (2021).
  38. Ramseyer, F., Tschacher, W. Nonverbal synchrony in psychotherapy: Coordinated body movement reflects relationship quality and outcome. Journal of Consulting and Clinical Psychology. 79 (3), 284-295 (2011).
  39. Zhang, X., Noah, J. A., Dravida, S., Hirsch, J. Optimization of wavelet coherence analysis as a measure of neural synchrony during hyperscanning using functional near-infrared spectroscopy. Neurophotonics. 7 (1), 015010 (2020).
  40. Walton, A. E., Richardson, M. J., Langland-Hassan, P., Chemero, A. Improvisation and the self-organization of multiple musical bodies. Frontiers in Psychology. 6, 313 (2015).
  41. Varlet, M., Marin, L., Lagarde, J., Bardy, B. G. Social postural coordination. Journal of Experimental Psychology: Human Perception and Performance. 37 (2), 473-483 (2011).
  42. Hale, J., Ward, J. A., Buccheri, F., Oliver, D., Hamilton, A. F. d. e. C. Are you on my wavelength? Interpersonal coordination in dyadic conversations. Journal of Nonverbal Behavior. 44 (1), 63-83 (2020).
  43. Fujiwara, K., Daibo, I. Evaluating interpersonal synchrony: Wavelet transform toward an unstructured conversation. Frontiers in Psychology. 7, 516 (2016).
  44. Nozawa, T., Sasaki, Y., Sakaki, K., Yokoyama, R., Kawashima, R. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. NeuroImage. 133, 484-497 (2016).
  45. Dai, R., et al. Holistic cognitive and neural processes: A fNIRS-hyperscanning study on interpersonal sensorimotor synchronization. Social Cognitive and Affective Neuroscience. 13 (11), 1141-1154 (2018).
  46. Lu, K., Qiao, X., Yun, Q., Hao, N. Educational diversity and group creativity: Evidence from fNIRS hyperscanning. NeuroImage. 243, 118564 (2021).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved