JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

Einfluss von Mikrowellen-Synthesebedingungen auf die Struktur von Nickelhydroxid-Nanoblättern

Published: August 18th, 2023

DOI:

10.3791/65412

1Materials Science, Engineering, and Commercialization Program, Texas State University, 2Department of Chemistry and Biochemistry, Texas State University, 3Westlake Highschool

Nickelhydroxid-Nanoblätter werden durch eine mikrowellenunterstützte hydrothermale Reaktion synthetisiert. Dieses Protokoll zeigt, dass die Reaktionstemperatur und -zeit, die für die Mikrowellensynthese verwendet werden, die Reaktionsausbeute, die Kristallstruktur und die lokale Koordinationsumgebung beeinflusst.

Ein Protokoll für die schnelle, mikrowellengestützte hydrothermale Synthese von Nickelhydroxid-Nanoblättern unter leicht sauren Bedingungen wird vorgestellt und der Einfluss von Reaktionstemperatur und -zeit auf die Struktur des Materials untersucht. Alle untersuchten Reaktionsbedingungen führen zu Aggregaten von geschichteten α-Ni(OH)2-Nanoblättern. Die Reaktionstemperatur und -zeit beeinflussen die Struktur des Materials und die Produktausbeute stark. Die Synthese von α-Ni(OH)2 bei höheren Temperaturen erhöht die Reaktionsausbeute, verringert den Abstand zwischen den Schichten, erhöht die Größe der kristallinen Domäne, verschiebt die Frequenzen der Anionenschwingungsmoden zwischen den Schichten und verringert den Porendurchmesser. Längere Reaktionszeiten erhöhen die Reaktionsausbeute und führen zu ähnlichen kristallinen Domänengrößen. Die Überwachung des Reaktionsdrucks in situ zeigt, dass bei höheren Reaktionstemperaturen höhere Drücke erzielt werden. Diese mikrowellengestützte Syntheseroute bietet einen schnellen, skalierbaren Prozess mit hohem Durchsatz, der auf die Synthese und Herstellung einer Vielzahl von Übergangsmetallhydroxiden angewendet werden kann, die für zahlreiche Energiespeicher-, Katalyse-, Sensor- und andere Anwendungen verwendet werden.

Nickelhydroxid, Ni(OH)2, wird für zahlreiche Anwendungen verwendet, darunter Nickel-Zink- und Nickel-Metallhydrid-Batterien 1,2,3,4, Brennstoffzellen4, Wasserelektrolyseure 4,5,6,7,8,9, Superkondensatoren4, Photokatalysatoren 4, Anionenaustauscher10

Log in or to access full content. Learn more about your institution’s access to JoVE content here

HINWEIS: Die schematische Übersicht über den Mikrowellensyntheseprozess ist in Abbildung 1 dargestellt.

1. Mikrowellensynthese von α-Ni(OH)2-Nanoblättern

  1. Herstellung der Vorläuferlösung
    1. Bereiten Sie die Vorläuferlösung vor, indem Sie 15 ml Reinstwasser (≥18 MΩ-cm) und 105 ml Ethylenglykol mischen. 5,0 g Ni(NO3)2 zugeben · 6H2Ound 4,1 g Harnstoff in die Lösung geben und abdec.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Einfluss von Reaktionstemperatur und -zeit auf die Synthese von α-Ni(OH)2
Vor der Reaktion hat die Vorläuferlösung [Ni(NO3)2 ·6H2O, Harnstoff, Ethylenglykol und Wasser] eine transparente grüne Farbe mit einem pH-Wert von 4,41 ± 0,10 (Abbildung 2A und Tabelle 1). Die Temperatur der Mikrowellenreaktion (entweder 120 °C oder 180 °C) beeinflusst den In-situ-Reaktionsdruck und die Farbe der Lösung (.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Die Mikrowellensynthese bietet einen Weg zur Erzeugung von Ni(OH)2, der im Vergleich zu herkömmlichen hydrothermalen Methoden (typische Reaktionszeiten von 4,5 h) deutlich schneller ist (13-30 Minuten) 38. Unter Verwendung dieser leicht sauren Mikrowellensyntheseroute zur Herstellung ultradünner α-Ni(OH)2-Nanoblätter wird beobachtet, dass Reaktionszeit und Temperatur den pH-Wert, die Ausbeute, die Morphologie, die Porosität und die Struktur der resultierenden Materialien.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

S.W.K. und C.P.R. bedanken sich für die Unterstützung durch das Office of Naval Research Navy Undersea Research Program (Grant No. N00014-21-1-2072). S.W.K. bedankt sich für die Unterstützung durch das Naval Research Enterprise Internship Program. C.P.R. und C.M. danken der National Science Foundation Partnerships for Research and Education in Materials (PREM) Center for Intelligent Materials Assembly, Award No. 2122041, für die Analyse der Reaktionsbedingungen.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
ATR-FTIRBrukerTensor II FT-IR spectrometer equipped with a Harrick Scientific SplitPea ATR micro-sampling accessory
Bath sonicatorFisher Scientific15-337-409--
Ethanol VWR analyticalAC61509-0040200 proof
Ethylene GlycolVWR analyticalBDH1125-4LP99% purity
Falcon Centrifuge tubesVWR analytical21008-94050 mL
KimWipesVWR analytical21905-026--
Lab Quest 2Vernier LABQ2--
Microwave ReactorAnton Parr165741Monowave 450
Ni(NO3)2 · 6 H2OWard's Science470301-856Research lab grade
pH ProbeVernier PH-BTACalibrated vs standard pH solutions (pH= 4, 7, 11)
PorosemeterMicromeritics --ASAP 2020. Analysis software: Micromeritics, version 4.03
Powder x-ray diffactometerBrukerAXS Advanced Poweder x-ray diffractometer; d-spacing, and crystallite size analyses were performed using Highscore XRD software, and crystal structures were created using VESTA 3 software.
Reaction vialAnton Parr8272330 mL G30 wideneck, 20 mL max fill capacity
Reaction vial locking lidAnton Parr161724G30 Snap Cap
Reaction vial PTFE septumAnton Parr161728Wideneck
Scanning electron microscopeFEI--Helios Nanolab 400
UreaVWR analyticalBDH4602-500GACS grade

  1. Liu, B., et al. 120 Years of nickel-based cathodes for alkaline batteries. Journal of Alloys and Compounds. 834, 155185 (2020).
  2. Young, K. H., et al. Fabrications of high-capacity α-Ni(OH)2. Batteries. 3, 6 (2017).
  3. Huang, M., Li, M., Niu, C., Li, Q., Mai, L. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Advanced Functional Materials. 29 (11), 1807847 (2019).
  4. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences. 471 (2174), 20140792 (2015).
  5. Miao, Y., et al. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics. 53, 428-439 (2014).
  6. Suen, N. T., et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews. 46 (2), 337-365 (2017).
  7. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T., Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis. 5 (9), 5380-5387 (2015).
  8. Rossini, P. d. O., et al. Ni-based double hydroxides as electrocatalysts in chemical sensors: a review. Trends in Analytical Chemistry. 126, 115859 (2020).
  9. Yu, Z., Bai, Y., Tsekouras, G., Cheng, Z. Recent advances in Ni-Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select. 3 (4), 766-791 (2021).
  10. Othman, M. R., Helwani, Z., Martunus, F. W. J. N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Applied Organometallic Chemistry. 23 (9), 335-346 (2009).
  11. Bode, V. H., Dehmelt, K., Witte, J. About the nickel hydroxide electrode. II. On the oxidation products of nickel(II) hydroxidesZeitschrift für Anorganische und Allgemeine Chemie. 366, 1-21 (1969).
  12. Kimmel, S. W., et al. Capacity and phase stability of metal-substituted α-Ni(OH)2 nanosheets in aqueous Ni-Zn batteries. Materials Advances. 2 (9), 3060-3074 (2021).
  13. Corrigan, D. A., Knight, S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. Journal of the Electrochemical Society. 136 (3), 613-619 (1989).
  14. Shangguan, E., et al. A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. Journal of Power Sources. 282, 158-168 (2015).
  15. Li, Y. W., et al. Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy. 35 (6), 2539-2545 (2010).
  16. Wang, C., Zhang, X., Xu, Z., Sun, X., Ma, Y. Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: structural design and green synthesis for advanced electrochemical storage. ACS Applied Materials & Interfaces. 7 (35), 19601-19610 (2015).
  17. Hunter, B. M., Hieringer, W., Winkler, J. R., Gray, H. B., Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science. 9 (5), 1734-1743 (2016).
  18. Zhou, D., et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research. 11, 1358-1368 (2018).
  19. Cochran, E. A., Woods, K. N., Johnson, D. W., Page, C. J., Boettcher, S. W. Unique chemistries of metal-nitrate precursors to form metal-oxide thin films from solution: materials for electronic and energy applications. Journal of Materials Chemistry A. 7 (42), 24124-24149 (2019).
  20. Bilecka, I., Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2 (8), 1358-1374 (2010).
  21. Zhang, X., et al. Microwave-assisted synthesis of 3D flowerlike alpha-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences. 58, 1871-1876 (2015).
  22. Li, J., Wei, M., Chu, W., Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chemical Engineering Journal. 316, 277-287 (2017).
  23. Tao, Y., et al. Microwave synthesis of nickel/cobalt double hydroxide ultrathin flowerclusters with three-dimensional structures for high-performance supercapacitors. Electrochimica Acta. 111, 71-79 (2013).
  24. Zhu, Y., et al. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Scientific Reports. 4, 1-7 (2014).
  25. Benito, P., Labajos, F. M., Rives, V. Microwave-treated layered double hydroxides containing Ni and Al: the effect of added Zn. Journal of Solid State Chemistry. 179 (12), 3784-3797 (2006).
  26. Soler-Illia, G. J. d. A., Jobbágy, M., Regazzoni, A. E., Blesa, M. A. Synthesis of nickel hydroxide by homogeneous alkalinization. precipitation mechanism. Chemistry of Materials. 11 (11), 3140-3146 (1999).
  27. Xu, L., et al. 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chemistry of Materials. 20 (1), 308-316 (2008).
  28. Alshareef, S. F., Alhebshi, N. A., Almashhori, K., Alshaikheid, H. S., Al-Hazmi, F. A ten-minute synthesis of alpha-Ni(OH)2 nanoflakes assisted by microwave on flexible stainless-steel for energy storage devices. Nanomaterials. 12 (11), 1911 (2022).
  29. Godínez-Salomón, F., et al. Self-supported hydrous iridium-nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catalysis. 8 (11), 10498-10520 (2018).
  30. Godínez-Salomón, F., Albiter, L., Mendoza-Cruz, R., Rhodes, C. P. Bimetallic two-dimensional nanoframes: high activity acidic bifunctional oxygen reduction and evolution electrocatalysts. ACS Applied Energy Materials. 3 (3), 2404-2421 (2020).
  31. Ying, Y., et al. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Advances. 3 (7), 1976-1996 (2021).
  32. Kimmel, S. W., et al. Structure and magnetism of iron-substituted nickel hydroxide nanosheets. Magnetochemistry. 9 (1), 25-47 (2023).
  33. Thommes, M., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 87 (9-10), 1051-1069 (2015).
  34. Birkholz, M., Fewster, P. F., Genzel, C. . Thin Film Analysis by X-ray Scattering. , (2006).
  35. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. Raman and infrared spectroscopy of alpha and beta phases of thin nickel hydroxide films electrochemically formed on nickel. Journal of Physical Chemistry A. 116 (25), 6771-6784 (2012).
  36. Choy, J. H., Kwon, Y. M., Han, K. S., Song, S. W., Chang, S. H. Intra- and inter-layer structures of layered hydroxy double salts, Ni1-xZn2x(OH)2(CH3CO2)2xnH2O. Materials Letters. 34 (3-6), 356-363 (1998).
  37. Momma, K., Izumi, F. VESTA for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography. 44 (6), 1272-1276 (2011).
  38. Godinez-Salomon, F., Mendoza-Cruz, R., Arellano-Jimenez, M. J., Jose-Yacaman, M., Rhodes, C. P. Metallic two-dimensional nanoframes: unsupported hierarchical nickel-platinum alloy nanoarchitectures with enhanced electrochemical oxygen reduction activity and stability. ACS Applied Materials & Interfaces. 9 (22), 18660-18674 (2017).
  39. Shakhashiri, B. Z., Dirreen, G. E., Juergens, F. Color, solubility, and complex ion equilibria of nickel (II) species in aqueous solution. Journal of Chemical Education. 57 (12), 900-901 (1980).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved