JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

マイクロ波合成条件が水酸化ニッケルナノシートの構造に及ぼす影響

Published: August 18th, 2023

DOI:

10.3791/65412

1Materials Science, Engineering, and Commercialization Program, Texas State University, 2Department of Chemistry and Biochemistry, Texas State University, 3Westlake Highschool

水酸化ニッケルナノシートは、マイクロ波を利用した水熱反応によって合成されます。このプロトコルは、マイクロ波合成に使用される反応温度と時間が、反応収率、結晶構造、および局所配位環境に影響を与えることを示しています。

弱酸性条件下での水酸化ニッケルナノシートの迅速なマイクロ波支援水熱合成のプロトコルを提示し、反応温度と反応時間が材料構造に及ぼす影響を調べます。研究したすべての反応条件は、層状α-Ni(OH)2 ナノシートの凝集体をもたらします。反応温度と反応時間は、材料の構造と生成物の収率に強く影響します。α-Ni(OH)2 を高温で合成すると、反応収率が増加し、層間間隔が小さくなり、結晶ドメインサイズが大きくなり、層間アニオン振動モードの周波数がシフトし、細孔径が小さくなります。反応時間が長いほど、反応収率が向上し、結晶ドメインサイズが類似します。反応圧力を その場 でモニタリングすると、反応温度が高いほど高い圧力が得られることがわかります。このマイクロ波支援合成法は、多数のエネルギー貯蔵、触媒、センサー、およびその他のアプリケーションに使用されるさまざまな遷移金属水酸化物の合成と製造に適用できる、迅速でハイスループットなスケーラブルなプロセスを提供します。

水酸化ニッケル(Ni(OH)2)は、ニッケル亜鉛電池およびニッケル水素電池1,2,3,4、燃料電池4、水電解槽4,5,6,7,8,9、スーパーキャパシタ4、光触媒4、陰イオン交換体10など、多くの用途に使用されています、その他多くの分析、電気化学、およびセンサーアプリケーション4,5。Ni(OH)2には、β-Ni(OH)2

Log in or to access full content. Learn more about your institution’s access to JoVE content here

注:マイクロ波合成プロセスの概略図を 図1に示します。

1. α-Ni(OH)2 ナノシートのマイクロ波合成

  1. 前駆体溶液の調製
    1. 15mLの超純水(≥18MΩ-cm)と105mLのエチレングリコールを混合して前駆体溶液を調製する。Ni(NO3)2 · 5.0gを加える6 H2Oおよび4.1gの尿素を溶液に含み、蓋をする。
    2. 前駆体溶液?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

α-Ni(OH)2の合成に及ぼす反応温度と時間の影響
反応前の前駆体溶液[Ni(NO3)26H2O、尿素、エチレングリコール、及び水]は、pH4.41±0.10の透明な緑色である(図2Aおよび表1)。マイクロ波反応の温度(120°Cまたは180°C)は、溶液のin situ反応圧力と色に影響を与えます(図2B-G<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

マイクロ波合成は、従来の熱水法(典型的な反応時間4.5時間)と比較して大幅に速い(反応時間13〜30分)Ni(OH)2を生成する経路を提供します38。この弱酸性マイクロ波合成経路を用いて極薄のα-Ni(OH)2ナノシートを作製すると、反応時間と温度が反応pH、収率、形態、多孔性、および構造に影響を与えることが観察されます。in situ反応圧力計を使用すると、120.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

SWKとC.P.R.は、Office of Naval Research Navy Undersea Research Program(助成金番号N00014-21-1-2072)からの支援に感謝しています。SWKは、海軍研究企業インターンシッププログラムからの支援を認めています。C.P.R.とC.M.は、反応条件の解析において、米国国立科学財団の材料研究教育パートナーシップ(PREM)のインテリジェント材料アセンブリセンター(Award No. 2122041)の支援を認めています。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
ATR-FTIRBrukerTensor II FT-IR spectrometer equipped with a Harrick Scientific SplitPea ATR micro-sampling accessory
Bath sonicatorFisher Scientific15-337-409--
Ethanol VWR analyticalAC61509-0040200 proof
Ethylene GlycolVWR analyticalBDH1125-4LP99% purity
Falcon Centrifuge tubesVWR analytical21008-94050 mL
KimWipesVWR analytical21905-026--
Lab Quest 2Vernier LABQ2--
Microwave ReactorAnton Parr165741Monowave 450
Ni(NO3)2 · 6 H2OWard's Science470301-856Research lab grade
pH ProbeVernier PH-BTACalibrated vs standard pH solutions (pH= 4, 7, 11)
PorosemeterMicromeritics --ASAP 2020. Analysis software: Micromeritics, version 4.03
Powder x-ray diffactometerBrukerAXS Advanced Poweder x-ray diffractometer; d-spacing, and crystallite size analyses were performed using Highscore XRD software, and crystal structures were created using VESTA 3 software.
Reaction vialAnton Parr8272330 mL G30 wideneck, 20 mL max fill capacity
Reaction vial locking lidAnton Parr161724G30 Snap Cap
Reaction vial PTFE septumAnton Parr161728Wideneck
Scanning electron microscopeFEI--Helios Nanolab 400
UreaVWR analyticalBDH4602-500GACS grade

  1. Liu, B., et al. 120 Years of nickel-based cathodes for alkaline batteries. Journal of Alloys and Compounds. 834, 155185 (2020).
  2. Young, K. H., et al. Fabrications of high-capacity α-Ni(OH)2. Batteries. 3, 6 (2017).
  3. Huang, M., Li, M., Niu, C., Li, Q., Mai, L. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Advanced Functional Materials. 29 (11), 1807847 (2019).
  4. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences. 471 (2174), 20140792 (2015).
  5. Miao, Y., et al. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics. 53, 428-439 (2014).
  6. Suen, N. T., et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews. 46 (2), 337-365 (2017).
  7. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T., Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis. 5 (9), 5380-5387 (2015).
  8. Rossini, P. d. O., et al. Ni-based double hydroxides as electrocatalysts in chemical sensors: a review. Trends in Analytical Chemistry. 126, 115859 (2020).
  9. Yu, Z., Bai, Y., Tsekouras, G., Cheng, Z. Recent advances in Ni-Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select. 3 (4), 766-791 (2021).
  10. Othman, M. R., Helwani, Z., Martunus, F. W. J. N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Applied Organometallic Chemistry. 23 (9), 335-346 (2009).
  11. Bode, V. H., Dehmelt, K., Witte, J. About the nickel hydroxide electrode. II. On the oxidation products of nickel(II) hydroxidesZeitschrift für Anorganische und Allgemeine Chemie. 366, 1-21 (1969).
  12. Kimmel, S. W., et al. Capacity and phase stability of metal-substituted α-Ni(OH)2 nanosheets in aqueous Ni-Zn batteries. Materials Advances. 2 (9), 3060-3074 (2021).
  13. Corrigan, D. A., Knight, S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. Journal of the Electrochemical Society. 136 (3), 613-619 (1989).
  14. Shangguan, E., et al. A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. Journal of Power Sources. 282, 158-168 (2015).
  15. Li, Y. W., et al. Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy. 35 (6), 2539-2545 (2010).
  16. Wang, C., Zhang, X., Xu, Z., Sun, X., Ma, Y. Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: structural design and green synthesis for advanced electrochemical storage. ACS Applied Materials & Interfaces. 7 (35), 19601-19610 (2015).
  17. Hunter, B. M., Hieringer, W., Winkler, J. R., Gray, H. B., Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science. 9 (5), 1734-1743 (2016).
  18. Zhou, D., et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research. 11, 1358-1368 (2018).
  19. Cochran, E. A., Woods, K. N., Johnson, D. W., Page, C. J., Boettcher, S. W. Unique chemistries of metal-nitrate precursors to form metal-oxide thin films from solution: materials for electronic and energy applications. Journal of Materials Chemistry A. 7 (42), 24124-24149 (2019).
  20. Bilecka, I., Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2 (8), 1358-1374 (2010).
  21. Zhang, X., et al. Microwave-assisted synthesis of 3D flowerlike alpha-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences. 58, 1871-1876 (2015).
  22. Li, J., Wei, M., Chu, W., Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chemical Engineering Journal. 316, 277-287 (2017).
  23. Tao, Y., et al. Microwave synthesis of nickel/cobalt double hydroxide ultrathin flowerclusters with three-dimensional structures for high-performance supercapacitors. Electrochimica Acta. 111, 71-79 (2013).
  24. Zhu, Y., et al. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Scientific Reports. 4, 1-7 (2014).
  25. Benito, P., Labajos, F. M., Rives, V. Microwave-treated layered double hydroxides containing Ni and Al: the effect of added Zn. Journal of Solid State Chemistry. 179 (12), 3784-3797 (2006).
  26. Soler-Illia, G. J. d. A., Jobbágy, M., Regazzoni, A. E., Blesa, M. A. Synthesis of nickel hydroxide by homogeneous alkalinization. precipitation mechanism. Chemistry of Materials. 11 (11), 3140-3146 (1999).
  27. Xu, L., et al. 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chemistry of Materials. 20 (1), 308-316 (2008).
  28. Alshareef, S. F., Alhebshi, N. A., Almashhori, K., Alshaikheid, H. S., Al-Hazmi, F. A ten-minute synthesis of alpha-Ni(OH)2 nanoflakes assisted by microwave on flexible stainless-steel for energy storage devices. Nanomaterials. 12 (11), 1911 (2022).
  29. Godínez-Salomón, F., et al. Self-supported hydrous iridium-nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catalysis. 8 (11), 10498-10520 (2018).
  30. Godínez-Salomón, F., Albiter, L., Mendoza-Cruz, R., Rhodes, C. P. Bimetallic two-dimensional nanoframes: high activity acidic bifunctional oxygen reduction and evolution electrocatalysts. ACS Applied Energy Materials. 3 (3), 2404-2421 (2020).
  31. Ying, Y., et al. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Advances. 3 (7), 1976-1996 (2021).
  32. Kimmel, S. W., et al. Structure and magnetism of iron-substituted nickel hydroxide nanosheets. Magnetochemistry. 9 (1), 25-47 (2023).
  33. Thommes, M., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 87 (9-10), 1051-1069 (2015).
  34. Birkholz, M., Fewster, P. F., Genzel, C. . Thin Film Analysis by X-ray Scattering. , (2006).
  35. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. Raman and infrared spectroscopy of alpha and beta phases of thin nickel hydroxide films electrochemically formed on nickel. Journal of Physical Chemistry A. 116 (25), 6771-6784 (2012).
  36. Choy, J. H., Kwon, Y. M., Han, K. S., Song, S. W., Chang, S. H. Intra- and inter-layer structures of layered hydroxy double salts, Ni1-xZn2x(OH)2(CH3CO2)2xnH2O. Materials Letters. 34 (3-6), 356-363 (1998).
  37. Momma, K., Izumi, F. VESTA for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography. 44 (6), 1272-1276 (2011).
  38. Godinez-Salomon, F., Mendoza-Cruz, R., Arellano-Jimenez, M. J., Jose-Yacaman, M., Rhodes, C. P. Metallic two-dimensional nanoframes: unsupported hierarchical nickel-platinum alloy nanoarchitectures with enhanced electrochemical oxygen reduction activity and stability. ACS Applied Materials & Interfaces. 9 (22), 18660-18674 (2017).
  39. Shakhashiri, B. Z., Dirreen, G. E., Juergens, F. Color, solubility, and complex ion equilibria of nickel (II) species in aqueous solution. Journal of Chemical Education. 57 (12), 900-901 (1980).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved