JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

Влияние условий микроволнового синтеза на структуру нанолистов гидроксида никеля

Published: August 18th, 2023

DOI:

10.3791/65412

1Materials Science, Engineering, and Commercialization Program, Texas State University, 2Department of Chemistry and Biochemistry, Texas State University, 3Westlake Highschool

Нанолисты гидроксида никеля синтезируются методом гидротермальной реакции с микроволновой поддержкой. Этот протокол демонстрирует, что температура и время реакции, используемые для микроволнового синтеза, влияют на выход реакции, кристаллическую структуру и локальную координационную среду.

Представлен протокол быстрого микроволнового гидротермального синтеза нанолистов гидроксида никеля в слабокислых условиях, а также исследовано влияние температуры и времени реакции на структуру материала. Все условия реакции приводят к образованию агрегатов слоистых нанолистов α-Ni(OH)2 . Температура и время реакции сильно влияют на структуру материала и выход продукта. Синтез α-Ni(OH)2 при более высоких температурах увеличивает выход реакции, уменьшает межслоевое расстояние, увеличивает размер кристаллического домена, сдвигает частоты колебательных мод межслойных анионов и уменьшает диаметр пор. Более длительное время реакции увеличивает выход реакции и приводит к одинаковым размерам кристаллических доменов. Мониторинг реакционного давления in situ показывает, что более высокое давление достигается при более высоких температурах реакции. Этот метод микроволнового синтеза обеспечивает быстрый, высокопроизводительный и масштабируемый процесс, который может быть применен для синтеза и производства различных гидроксидов переходных металлов, используемых для многочисленных накопителей энергии, катализа, датчиков и других применений.

Гидроксид никеля, Ni(OH)2, используется для многочисленных применений, включая никель-цинковые и никель-металлогидридные батареи 1,2,3,4, топливные элементы4, электролизеры воды 4,5,6,7,8,9, суперконденсаторы 4, фотокатализаторы4, аниониты 10

Log in or to access full content. Learn more about your institution’s access to JoVE content here

ПРИМЕЧАНИЕ: Схематическое изображение процесса микроволнового синтеза представлено на рисунке 1.

1. Микроволновый синтез нанолистов α-Ni(OH)2

  1. Приготовление раствора прекурсора
    1. Приготовьте раствор прекурсора, смешав 15 мл сверхчисто?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Влияние температуры и времени реакции на синтез α-Ni(OH)2
До начала реакции раствор прекурсора [Ni(NO3)2 · 6H2O, мочевина, этиленгликоль и вода] имеет прозрачный зеленый цвет с рН 4,41 ± 0,10 (рис. 2А и табл. 1). Температура микроволновой реакци.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Микроволновый синтез обеспечивает способ получения Ni(OH)2, который значительно быстрее (время реакции 13-30 мин) по сравнению с традиционными гидротермальными методами (типичное время реакции 4,5 ч)38. При использовании этого слабокислого метода микроволнового синтеза дл?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

S.W.K. и C.P.R. выражают благодарность за поддержку со стороны Управления военно-морских исследований Программы подводных исследований ВМС США (грант No N00014-21-1-2072). S.W.K. выражает признательность за поддержку со стороны Программы стажировки военно-морских научно-исследовательских предприятий. C.P.R и C.M. выражают признательность за поддержку со стороны Национального научного фонда Партнерства в области исследований и образования в области материалов (PREM), Центр сборки интеллектуальных материалов, премия No 2122041, за анализ условий реакции.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
ATR-FTIRBrukerTensor II FT-IR spectrometer equipped with a Harrick Scientific SplitPea ATR micro-sampling accessory
Bath sonicatorFisher Scientific15-337-409--
Ethanol VWR analyticalAC61509-0040200 proof
Ethylene GlycolVWR analyticalBDH1125-4LP99% purity
Falcon Centrifuge tubesVWR analytical21008-94050 mL
KimWipesVWR analytical21905-026--
Lab Quest 2Vernier LABQ2--
Microwave ReactorAnton Parr165741Monowave 450
Ni(NO3)2 · 6 H2OWard's Science470301-856Research lab grade
pH ProbeVernier PH-BTACalibrated vs standard pH solutions (pH= 4, 7, 11)
PorosemeterMicromeritics --ASAP 2020. Analysis software: Micromeritics, version 4.03
Powder x-ray diffactometerBrukerAXS Advanced Poweder x-ray diffractometer; d-spacing, and crystallite size analyses were performed using Highscore XRD software, and crystal structures were created using VESTA 3 software.
Reaction vialAnton Parr8272330 mL G30 wideneck, 20 mL max fill capacity
Reaction vial locking lidAnton Parr161724G30 Snap Cap
Reaction vial PTFE septumAnton Parr161728Wideneck
Scanning electron microscopeFEI--Helios Nanolab 400
UreaVWR analyticalBDH4602-500GACS grade

  1. Liu, B., et al. 120 Years of nickel-based cathodes for alkaline batteries. Journal of Alloys and Compounds. 834, 155185 (2020).
  2. Young, K. H., et al. Fabrications of high-capacity α-Ni(OH)2. Batteries. 3, 6 (2017).
  3. Huang, M., Li, M., Niu, C., Li, Q., Mai, L. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Advanced Functional Materials. 29 (11), 1807847 (2019).
  4. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences. 471 (2174), 20140792 (2015).
  5. Miao, Y., et al. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics. 53, 428-439 (2014).
  6. Suen, N. T., et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews. 46 (2), 337-365 (2017).
  7. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T., Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis. 5 (9), 5380-5387 (2015).
  8. Rossini, P. d. O., et al. Ni-based double hydroxides as electrocatalysts in chemical sensors: a review. Trends in Analytical Chemistry. 126, 115859 (2020).
  9. Yu, Z., Bai, Y., Tsekouras, G., Cheng, Z. Recent advances in Ni-Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select. 3 (4), 766-791 (2021).
  10. Othman, M. R., Helwani, Z., Martunus, F. W. J. N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Applied Organometallic Chemistry. 23 (9), 335-346 (2009).
  11. Bode, V. H., Dehmelt, K., Witte, J. About the nickel hydroxide electrode. II. On the oxidation products of nickel(II) hydroxidesZeitschrift für Anorganische und Allgemeine Chemie. 366, 1-21 (1969).
  12. Kimmel, S. W., et al. Capacity and phase stability of metal-substituted α-Ni(OH)2 nanosheets in aqueous Ni-Zn batteries. Materials Advances. 2 (9), 3060-3074 (2021).
  13. Corrigan, D. A., Knight, S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. Journal of the Electrochemical Society. 136 (3), 613-619 (1989).
  14. Shangguan, E., et al. A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. Journal of Power Sources. 282, 158-168 (2015).
  15. Li, Y. W., et al. Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy. 35 (6), 2539-2545 (2010).
  16. Wang, C., Zhang, X., Xu, Z., Sun, X., Ma, Y. Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: structural design and green synthesis for advanced electrochemical storage. ACS Applied Materials & Interfaces. 7 (35), 19601-19610 (2015).
  17. Hunter, B. M., Hieringer, W., Winkler, J. R., Gray, H. B., Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science. 9 (5), 1734-1743 (2016).
  18. Zhou, D., et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research. 11, 1358-1368 (2018).
  19. Cochran, E. A., Woods, K. N., Johnson, D. W., Page, C. J., Boettcher, S. W. Unique chemistries of metal-nitrate precursors to form metal-oxide thin films from solution: materials for electronic and energy applications. Journal of Materials Chemistry A. 7 (42), 24124-24149 (2019).
  20. Bilecka, I., Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2 (8), 1358-1374 (2010).
  21. Zhang, X., et al. Microwave-assisted synthesis of 3D flowerlike alpha-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences. 58, 1871-1876 (2015).
  22. Li, J., Wei, M., Chu, W., Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chemical Engineering Journal. 316, 277-287 (2017).
  23. Tao, Y., et al. Microwave synthesis of nickel/cobalt double hydroxide ultrathin flowerclusters with three-dimensional structures for high-performance supercapacitors. Electrochimica Acta. 111, 71-79 (2013).
  24. Zhu, Y., et al. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Scientific Reports. 4, 1-7 (2014).
  25. Benito, P., Labajos, F. M., Rives, V. Microwave-treated layered double hydroxides containing Ni and Al: the effect of added Zn. Journal of Solid State Chemistry. 179 (12), 3784-3797 (2006).
  26. Soler-Illia, G. J. d. A., Jobbágy, M., Regazzoni, A. E., Blesa, M. A. Synthesis of nickel hydroxide by homogeneous alkalinization. precipitation mechanism. Chemistry of Materials. 11 (11), 3140-3146 (1999).
  27. Xu, L., et al. 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chemistry of Materials. 20 (1), 308-316 (2008).
  28. Alshareef, S. F., Alhebshi, N. A., Almashhori, K., Alshaikheid, H. S., Al-Hazmi, F. A ten-minute synthesis of alpha-Ni(OH)2 nanoflakes assisted by microwave on flexible stainless-steel for energy storage devices. Nanomaterials. 12 (11), 1911 (2022).
  29. Godínez-Salomón, F., et al. Self-supported hydrous iridium-nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catalysis. 8 (11), 10498-10520 (2018).
  30. Godínez-Salomón, F., Albiter, L., Mendoza-Cruz, R., Rhodes, C. P. Bimetallic two-dimensional nanoframes: high activity acidic bifunctional oxygen reduction and evolution electrocatalysts. ACS Applied Energy Materials. 3 (3), 2404-2421 (2020).
  31. Ying, Y., et al. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Advances. 3 (7), 1976-1996 (2021).
  32. Kimmel, S. W., et al. Structure and magnetism of iron-substituted nickel hydroxide nanosheets. Magnetochemistry. 9 (1), 25-47 (2023).
  33. Thommes, M., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 87 (9-10), 1051-1069 (2015).
  34. Birkholz, M., Fewster, P. F., Genzel, C. . Thin Film Analysis by X-ray Scattering. , (2006).
  35. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. Raman and infrared spectroscopy of alpha and beta phases of thin nickel hydroxide films electrochemically formed on nickel. Journal of Physical Chemistry A. 116 (25), 6771-6784 (2012).
  36. Choy, J. H., Kwon, Y. M., Han, K. S., Song, S. W., Chang, S. H. Intra- and inter-layer structures of layered hydroxy double salts, Ni1-xZn2x(OH)2(CH3CO2)2xnH2O. Materials Letters. 34 (3-6), 356-363 (1998).
  37. Momma, K., Izumi, F. VESTA for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography. 44 (6), 1272-1276 (2011).
  38. Godinez-Salomon, F., Mendoza-Cruz, R., Arellano-Jimenez, M. J., Jose-Yacaman, M., Rhodes, C. P. Metallic two-dimensional nanoframes: unsupported hierarchical nickel-platinum alloy nanoarchitectures with enhanced electrochemical oxygen reduction activity and stability. ACS Applied Materials & Interfaces. 9 (22), 18660-18674 (2017).
  39. Shakhashiri, B. Z., Dirreen, G. E., Juergens, F. Color, solubility, and complex ion equilibria of nickel (II) species in aqueous solution. Journal of Chemical Education. 57 (12), 900-901 (1980).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved