JoVE Logo
Faculty Resource Center

Sign In

Abstract

Engineering

Real-Time Imaging of Bonding in 3D-Printed Layers

Published: September 1st, 2023

DOI:

10.3791/65415

1Physical Chemistry and Soft Matter, Wageningen University & Research

In recent times, 3D printing technology has revolutionized our ability to design and produce products, but optimizing the print quality can be challenging. The process of extrusion 3D printing involves pressuring molten material through a thin nozzle and depositing it onto previously extruded material. This method relies on bonding between the consecutive layers to create a strong and visually appealing final product. This is no easy task, as many parameters, such as the nozzle temperature, layer thickness, and printing speed, must be fine-tuned to achieve optimal results. In this study, a method for visualizing the polymer dynamics during extrusion is presented, giving insight into the layer bonding process. Using laser speckle imaging, the plastic flow and fusion can be resolved non-invasively, internally, and with high spatiotemporal resolution. This measurement, which is easy to perform, provides an in-depth understanding of the underlying mechanics influencing the final print quality. This methodology was tested with a range of cooling fan speeds, and the results showed increased polymer motion with lower fan speeds and, thus, explained the poor printing quality when the cooling fan was turned off. These findings show that this methodology allows for optimizing the printing settings and understanding the material behavior. This information can be used for the development and testing of novel printing materials or advanced slicing procedures. With this approach, a deeper understanding of extrusion can be built to take 3D printing to the next level.

Tags

Keywords 3D Printing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved