A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Medicine
La reconstrucción tridimensional (3D) de los nódulos pulmonares utilizando imágenes médicas ha introducido nuevos enfoques técnicos para diagnosticar y tratar los nódulos pulmonares, y estos enfoques están siendo progresivamente reconocidos y adoptados por médicos y pacientes. No obstante, la construcción de un modelo digital 3D relativamente universal de nódulos pulmonares para el diagnóstico y el tratamiento es un desafío debido a las diferencias en los dispositivos, los tiempos de disparo y los tipos de nódulos. El objetivo de este estudio es proponer un nuevo modelo digital 3D de nódulos pulmonares que sirva de puente entre médicos y pacientes y que sea también una herramienta de vanguardia para el prediagnóstico y la evaluación pronóstica. Muchos métodos de detección y reconocimiento de nódulos pulmonares impulsados por IA emplean técnicas de aprendizaje profundo para capturar las características radiológicas de los nódulos pulmonares, y estos métodos pueden lograr un buen rendimiento bajo la curva (AUC) del área. Sin embargo, los falsos positivos y falsos negativos siguen siendo un desafío para los radiólogos y los médicos. La interpretación y expresión de las características desde la perspectiva de la clasificación y el examen de los nódulos pulmonares siguen siendo insatisfactorias. En este estudio, se propone un método de reconstrucción 3D continua de todo el pulmón en posiciones horizontal y coronal mediante la combinación de tecnologías de procesamiento de imágenes médicas existentes. En comparación con otros métodos aplicables, este método permite a los usuarios localizar rápidamente los nódulos pulmonares e identificar sus propiedades fundamentales, al tiempo que observa los nódulos pulmonares desde múltiples perspectivas, proporcionando así una herramienta clínica más eficaz para diagnosticar y tratar los nódulos pulmonares.
Explore More Videos
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved