JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

在实验心理学和认知神经科学研究中呈现真人和真人行为的自然主义设置

Published: August 4th, 2023

DOI:

10.3791/65436

1Department of Cognitive Science, Middle East Technical University, 2Interdisciplinary Neuroscience Graduate Program, Bilkent University, 3Department of Computer Engineering, Middle East Technical University, 4Department of Cognitive Science, Jagiellonian University, 5Department of Psychology, Interdisciplinary Neuroscience Graduate Program, National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University

这项研究提出了一种自然主义的实验设置,允许研究人员呈现实时动作刺激,获得响应时间和鼠标跟踪数据,同时参与者在每次刺激显示后做出反应,并使用独特的系统在实验条件之间切换演员,包括特殊的透明有机发光二极管(OLED)屏幕和光操作。

对他人行为的感知对于生存、互动和沟通至关重要。尽管数十年的认知神经科学研究致力于理解对行为的感知,但我们仍然远离开发一种神经启发的计算机视觉系统来接近人类行为感知。一个主要的挑战是,现实世界中的行动由空间中“此时此地”发生的暂时展开的事件组成,并且是可以接受的。相比之下,迄今为止的视觉感知和认知神经科学研究主要通过2D显示器(例如图像或视频)研究动作感知,这些显示器在空间和时间上缺乏演员的存在,因此这些显示器在提供可操作性方面受到限制。尽管该领域的知识体系越来越多,但必须克服这些挑战,以便更好地了解在现实世界中感知他人行为的基本机制。本研究的目的是引入一种新颖的设置,在近似现实世界设置的场景中与真人演员进行自然主义实验室实验。本研究中使用的设置的核心元素是一个透明的有机发光二极管(OLED)屏幕,参与者可以通过该屏幕观看实际演员的现场表演,同时精确控制他们的演示时间。在这项工作中,该设置在行为实验中进行了测试。我们相信,该装置将帮助研究人员揭示基本且以前无法获得的动作感知认知和神经机制,并将成为未来研究自然环境中社会感知和认知的基础。

生存和社会互动的基本技能是感知和理解他人行为并在周围环境中与他们互动的能力。过去几十年的先前研究对理解个人如何感知和理解他人行为的基本原则做出了重大贡献1,2,3,4,5,6,7,8,9,10,11 .然而,鉴于相互作用的复杂性及其发生的环境,显然需要在自然环境中进一步发展知识体系,以便在日常生活环境中更全面地理解这种复杂的技能。

在我们的日常生活环境等自然环境中,感知和认知表现出具身的、嵌入的、延伸的和活跃的特征12.与倾向于低估身体和环境作用的大脑功能的内部主义描述相反,当代的具身认知方法侧....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

本研究中的实验方案得到了比尔肯特大学人类参与者研究伦理委员会的批准。所有参与研究的参与者均年满18岁,他们在开始研究之前阅读并签署了知情同意书。

1. 一般设计步骤

注意:图1A(顶视图)和图1B和图1C(正面和背面视图)显示了实验室布局; 这些数字是根据为这项?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

响应时间 (RT) 比较
目前的研究是一个正在进行的项目,因此,作为代表性结果,提供了来自实验主要部分(实验部分3)的数据。这些数据来自40名参与者,包括23名女性和17名男性,年龄在18-28岁之间(M = 22.75,SD = 3.12 )。

有必要调查因变量分布的正态性程度,以便为分析选择适当的统计方法。因此,执行夏皮罗-威尔克检验以了解三个因变量?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

本研究的首要目标是有助于我们理解人类高级视觉感知和认知在现实生活中如何工作。这项研究的重点是动作感知,并提出了一种自然但可控的实验范式,使研究人员能够通过在实验室环境中展示真实的演员来测试个人如何感知和评估他人的行为。

与现有方法相比,这一拟议方法的意义有三个方面。(1)通过向参与者展示现场动作,最大限度地发挥刺激的自然性。(2)现实.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这项工作得到了土耳其科学技术研究委员会(项目编号:120K913)和比尔肯特大学对 Burcu A. Urgen 的资助。我们感谢我们的飞行员参与者Sena Er Elmas带来了在演员变化之间添加背景噪音的想法,Süleyman Akı设置灯光电路,Tuvana Karaduman在后台使用安全摄像头的想法以及她作为研究中演员之一的贡献。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Adjustable Height TableCustom-madeN/AWidth: 60 cm, Height: 62 cm, Depth: 40 cm
Ardunio UNO Smart ProjectsA000066Microcontroller used for switching the state of the LEDs from the script running on the operator PC
Black PantsNo brandN/ARelaxed-fit pants of actors with no apparent brand name or logo.
CaseXigmatekEN43224XIGMATEK HELIOS RAINBOW LED USB 3.0 MidT ATX GAMING CASE
CPUAMDYD1600BBAFBOXAMD Ryzen 5 1600 Soket AM4 3.2 GHz - 3.6 GHz 16 MB 65 W 12 nm Processor
CurtainsCustom-madeN/AWidth: Part 1: 110 cm width from the wall (left) side, Part 2: 123 cm width above OLED display, Part 3: 170 cm from OLED display to right side, Cabin depth: 100 cm, Inside cabin depth: 100 cm, all heights 230 cm except for Part 2 (75 cm height)
Experimenter Adjustable/Swivel ChairNo brandN/AAny brand
Experimenter TableCustomN/AWidth: 160 cm, Height: 75 cm, Depth: 80 cm
GPUMSIGT 1030 2GHD4 LP OCMSI GEFORCE GT 1030 2GHD4 LP OC 2GB DDR4 64bit NVIDIA GPU
Grey-color blackout curtainCustom-madeN/AWidth: 330 cm, Height: 230 cm, used for covering the background
Hard DiskKioxiaLTC10Z240GG8Kioxia 240 GB Exceria Sata 3.0 SSD (555 MB Read/540 MB Write)
Hard DiskToshibaHDWK105UZSVAToshiba 2,5'' 500 GB L200 SATA 3.0 8 MB Cache 5400 Rpm 7 mm Harddisk
High-Power MOSFET ModuleN/AN/AHeating Controller MKS MOSFET Module
LaptopAppleS/N: C02P916ZG3QTMacBook Pro 11.1 Intel Core i7 (Used as the actor PC)
LaptopAsus UX410UUsed for monitoring the security camera in real-time.
LED lightsNo brandN/A
LED Strip Power SupplyNo brandN/AAC to DC voltage converter used for supplying DC voltage to the lighting circuit
MATLAB The MathWorks Inc., Natick, MA, USAVersion: R2022aUsed for programming the experiment.

Required Toolboxes:
MATLAB Support Package for Arduino Hardware (version 22.1.2)
Instrument Control Toolbox (version 4.6)
Psychtoolbox (version 3)
MonitorPhilipsUHB2051005145 Model ID: 242V8A/00, PHILIPS 23.8" 242V8A 4ms 75 Hz Freesync DP-HDMI+VGA IPS Gaming Monitor 
MotherboardMSIB450M-A PRO MAXMSI B450M-A PRO MAX Amd B450 Socket AM4 DDR4 3466(OC) M.2 Motherboard
Mouse Pad for participantMonster 78185721101502042 / 8699266781857Pusat Gaming Mouse Pad XL
Night lampAukesES620-0.5W 6500K-IP 20Used for helping the actors see around when the lights are off in the backstage.
Participant Adjustable/Swivel ChairNo brandN/A
Participant TableIKEASandsberg 294.203.93Width: 110 cm, Height: 75 cm, Depth: 67 cm
Power Extension CableViko9011760Y250 V (6 inlets) Black
Power Extension CableViko9011730Y250 V (3 inlets) Black
Power Extension CableViko9011330Y250 V (3 inlets) White
Power Extension Cables-link Model No: SPG3-J-10AC - 250 V 3 meter (5 inlets)
Power SupplyTHERMALTAKEPS-LTP-0550NHSANE-1THERMALTAKE LITEPOWER RGB 550W APFC 12 cm FAN PSU
Professional Gaming MouseRampage8680096Model No: SMX-R50 
RAMGSKILLF4-3000C16S-8GVRBGSKILL 8GB (1x8GB) RipjawsV Red DDR4 3000 MHz CL16 1.35 V Single Ram
Reception bellNo brandN/AUsed for helping the communication between the experimenter and the actors.
Security CameraBrion Vega2-20204210Model:BV6000
SpeakersLogitechP/N: 880-000-405 PID: WD528XMUsed for playing the background music.
Survey SoftwareQualtrics N/A
Switching ModuleNo brandN/AF5305S PMOS Switch Module
Table under the OLED displayCustom-madeN/AWidth: 123 cm, Height: 75 cm, Depth: 50 cm
Transparent OLED DisplayPlanarPN: 998-1483-01 S/N:195210075A 55-inch transparent display that showcases dynamic information, enabled the opaque and transparent usage during the experiment.
UPSEAGK200610100087EAG 110
UPSEAG210312030507EAG 103
USB 2.0 Cable Type A/B for Arduino UNO (Blue)Smart ProjectsM000006 Used to connect the microcontroller to the experimenter PC.
USB to RS232 Converter s-link8680096082559Model: SW-U610
White Long-Sleeved Blouse (2)H&M (cotton)N/ARelaxed-fit blouses with a round neckline and without ant apparent brand name or logo.
Wireless KeyboardLogitechP/N: 820-003488 S/N: 1719CE0856D8Model: K360
Wireless MouseLogitechS/N: 2147LZ96BGQ9Model: M190 (Used as the response device)

  1. Grossman, E. D., Blake, R. Brain areas active during visual perception of biological motion. Neuron. 35 (6), 1167-1175 (2002).
  2. Saygin, A. P. Superior temporal and premotor brain areas necessary for biological motion perception. Brain. 130 (9), 2452-2461 (2007).
  3. Peelen, M. V., Downing, P. E. The neural basis of visual body perception. Nature Reviews Neuroscience. 8 (8), 636-648 (2007).
  4. Caspers, S., Zilles, K., Laird, A. R., Eickhoff, S. B. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage. 50 (3), 1148-1167 (2010).
  5. Nelissen, K., et al. Action observation circuits in the macaque monkey cortex. Journal of Neuroscience. 31 (10), 3743-3756 (2011).
  6. Oosterhof, N. N., Tipper, S. P., Downing, P. E. Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences. 17 (7), 311-318 (2013).
  7. Lingnau, A., Downing, P. E. The lateral occipitotemporal cortex in action. Trends in Cognitive Sciences. 19 (5), 268-277 (2015).
  8. Giese, M. A., Rizzolatti, G. Neural and computational mechanisms of action processing: Interaction between visual and motor representations. Neuron. 88 (1), 167-180 (2015).
  9. Tucciarelli, R., Wurm, M., Baccolo, E., Lingnau, A. The representational space of observed actions. eLife. 8, e47686 (2019).
  10. Tarhan, L., Konkle, T. Sociality and interaction envelope organize visual action representations. Nature Communications. 11 (1), 3002 (2020).
  11. Urgen, B. A., Saygin, A. P. Predictive processing account of action perception: Evidence from effective connectivity in the action observation network. Cortex. 128, 132-142 (2020).
  12. Newen, A., De Bruin, L., Gallagher, S. . The Oxford Handbook of 4E Cognition. , (2018).
  13. Snow, J. C., Culham, J. C. The treachery of images: How realism influences brain and behavior. Trends in Cognitive Sciences. 25 (6), 506-519 (2021).
  14. Matusz, P. J., Dikker, S., Huth, A. G., Perrodin, C. Are we ready for real-world neuroscience. Journal of Cognitive Neuroscience. 31 (3), 327-338 (2019).
  15. Zaki, J., Ochsner, K. The need for a cognitive neuroscience of naturalistic social cognition. Annals of the New York Academy of Sciences. 1167 (1), 16-30 (2009).
  16. Hasson, U., Honey, C. J. Future trends in Neuroimaging: Neural processes as expressed within real-life contexts. NeuroImage. 62 (2), 1272-1278 (2012).
  17. Risko, E. F., Laidlaw, K. E., Freeth, M., Foulsham, T., Kingstone, A. Social attention with real versus reel stimuli: toward an empirical approach to concerns about ecological validity. Frontiers in Human Neuroscience. 6, 143 (2012).
  18. Parsons, T. D. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience. 9, 660 (2015).
  19. Deuse, L., et al. Neural correlates of naturalistic social cognition: brain-behavior relationships in healthy adults. Social Cognitive and Affective Neuroscience. 11 (11), 1741-1751 (2016).
  20. Camerer, C., Mobbs, D. Differences in behavior and brain activity during hypothetical and real choices. Trends in Cognitive Sciences. 21 (1), 46-56 (2017).
  21. Nastase, S. A., Goldstein, A., Hasson, U. Keep it real: Rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage. 222, 117254 (2020).
  22. Kihlstrom, J. F. Ecological validity and "ecological validity&#34. Perspectives on Psychological Science. 16 (2), 466-471 (2021).
  23. Brunswik, E. . Perception and the Representative Design of Psychological Experiments. , (1956).
  24. Aronson, E., Carlsmith, J. M., Gilbert, D. T., Fiske, S. T., Lindzay, G. Experimentation in social psychology. The Handbook of Social Psychology. , 1-79 (1968).
  25. Ecological validity: Then and now. University of Colorado Available from: https://www.albany.edu/cpr/brunswik/notes/essay1.html (1998)
  26. Fan, S., Dal Monte, O., Chang, S. W. Levels of naturalism in social neuroscience research. IScience. 24 (7), 102702 (2021).
  27. Orban, G. A., Lanzilotto, M., Bonini, L. From observed action identity to social affordances. Trends in Cognitive Sciences. 25 (6), 493-505 (2021).
  28. Gray, H. M., Gray, K., Wegner, D. M. Dimensions of mind perception. Science. 315 (5812), 619 (2007).
  29. Li, Z., Terfurth, L., Woller, J. P., Wiese, E. Mind the machines: Applying implicit measures of mind perception to social robotics. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI. , 236-245 (2022).
  30. Karpinski, A., Steinman, R. B. The single category implicit association test as a measure of implicit social cognition. Journal of Personality and Social Psychology. 91 (1), 16 (2006).
  31. Greenwald, A. G., McGhee, D. E., Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. Journal of Personality and Social Psychology. 74 (6), 1464 (1998).
  32. Freeman, J. B., Ambady, N. MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods. 42 (1), 226-241 (2010).
  33. Pekçetin, T. N., Barinal, B., Tunç, J., Acarturk, C., Urgen, B. A. Studying mind perception in social robotics implicitly: The need for validation and norming. Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction. , 202-210 (2023).
  34. Yu, Z., Wang, F., Wang, D., Bastin, M. Beyond reaction times: Incorporating mouse-tracking measures into the implicit association test to examine its underlying process. Social Cognition. 30 (3), 289-306 (2012).
  35. Romero, C. A., Snow, J. C. Methods for presenting real-world objects under controlled laboratory conditions. Journal of Visualized Experiments. (148), e59762 (2019).
  36. Jastorff, J., Abdollahi, R. O., Fasano, F., Orban, G. A. Seeing biological actions in 3 D: An f MRI study. Human Brain Mapping. 37 (1), 203-219 (2016).
  37. Ferri, S., Pauwels, K., Rizzolatti, G., Orban, G. A. Stereoscopically observing manipulative actions. Cerebral Cortex. 26 (8), 3591-3610 (2016).
  38. Stangl, M., Maoz, S. L., Suthana, N. Mobile cognition: Imaging the human brain in the 'real world. Nature Reviews Neuroscience. 24 (6), 347-362 (2023).
  39. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science. 1, 417-446 (2015).
  40. Marblestone, A. H., Wayne, G., Kording, K. P. Toward an integration of deep learning and neuroscience. Frontiers in Computational Neuroscience. 10, 94 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved