JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Ein naturalistischer Aufbau zur Darstellung realer Menschen und Live-Aktionen in experimenteller Psychologie und kognitiven neurowissenschaftlichen Studien

Published: August 4th, 2023

DOI:

10.3791/65436

1Department of Cognitive Science, Middle East Technical University, 2Interdisciplinary Neuroscience Graduate Program, Bilkent University, 3Department of Computer Engineering, Middle East Technical University, 4Department of Cognitive Science, Jagiellonian University, 5Department of Psychology, Interdisciplinary Neuroscience Graduate Program, National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University

Diese Studie stellt einen naturalistischen Versuchsaufbau vor, der es den Forschern ermöglicht, Aktionsreize in Echtzeit zu präsentieren, Reaktionszeit- und Maus-Tracking-Daten zu erhalten, während die Teilnehmer nach jeder Reizanzeige reagieren, und die Akteure zwischen den Versuchsbedingungen mit einem einzigartigen System zu wechseln, das einen speziellen transparenten OLED-Bildschirm (Organic Light Emitting Diode) und Lichtmanipulation umfasst.

Die Wahrnehmung der Handlungen anderer ist entscheidend für das Überleben, die Interaktion und die Kommunikation. Trotz jahrzehntelanger Forschung in den kognitiven Neurowissenschaften, die sich dem Verständnis der Wahrnehmung von Handlungen widmet, sind wir noch weit davon entfernt, ein neuronal inspiriertes Computer-Vision-System zu entwickeln, das sich der menschlichen Handlungswahrnehmung annähert. Eine große Herausforderung besteht darin, dass Handlungen in der realen Welt aus zeitlich sich entfaltenden Ereignissen im Raum bestehen, die "hier und jetzt" stattfinden und handlungsfähig sind. Im Gegensatz dazu haben die visuelle Wahrnehmung und die bisherige Forschung in den kognitiven Neurowissenschaften die Handlungswahrnehmung durch 2D-Displays (z. B. Bilder oder Videos) weitgehend untersucht, bei denen die Präsenz von Akteuren in Raum und Zeit fehlt, so dass diese Displays nur begrenzt handlungsfähig sind. Trotz des wachsenden Wissens auf diesem Gebiet müssen diese Herausforderungen überwunden werden, um die grundlegenden Mechanismen der Wahrnehmung des Handelns anderer in der realen Welt besser zu verstehen. Das Ziel dieser Studie ist es, einen neuartigen Aufbau vorzustellen, um naturalistische Laborexperimente mit Live-Schauspielern in Szenarien durchzuführen, die sich realen Umgebungen annähern. Das Kernelement des in dieser Studie verwendeten Aufbaus ist ein transparenter OLED-Bildschirm (Organic Light Emitting Diode), durch den die Teilnehmer die Live-Aktionen eines physisch anwesenden Schauspielers verfolgen können, während das Timing ihrer Präsentation präzise gesteuert wird. In dieser Arbeit wurde dieser Aufbau in einem Verhaltensexperiment getestet. Wir glauben, dass der Aufbau den Forschern helfen wird, grundlegende und bisher unzugängliche kognitive und neuronale Mechanismen der Handlungswahrnehmung aufzudecken, und eine Grundlage für zukünftige Studien sein wird, die soziale Wahrnehmung und Kognition in naturalistischen Umgebungen untersuchen.

Eine grundlegende Fähigkeit für das Überleben und die soziale Interaktion ist die Fähigkeit, die Handlungen anderer wahrzunehmen und zu verstehen und mit ihnen in der Umgebung zu interagieren. Die bisherige Forschung der letzten Jahrzehnte hat wesentlich zum Verständnis der Grundprinzipien beigetragen, wie Individuen die Handlungen anderer wahrnehmen und verstehen 1,2,3,4,5,6,7,8,9,10,11

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Die experimentellen Protokolle in dieser Studie wurden von der Ethikkommission für Forschung mit menschlichen Teilnehmern der Bilkent University genehmigt. Alle Studienteilnehmer waren über 18 Jahre alt und lasen und unterschrieben die Einwilligungserklärung vor Beginn der Studie.

1. Allgemeine Designschritte

HINWEIS: Abbildung 1A (Draufsicht) und Abbildung 1B und Abbi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Vergleiche der Reaktionszeit (RT)
Da es sich bei der aktuellen Studie um ein fortlaufendes Projekt handelt, werden als repräsentative Ergebnisse Daten aus dem Hauptteil des Experiments (Experiment Teil 3) präsentiert. Diese Daten stammen von 40 Teilnehmern, darunter 23 Frauen und 17 Männer, im Alter von 18 bis 28 Jahren (M = 22,75, SD = 3,12).

Um die geeignete statistische Methode für die Analysen auswählen zu können, war es notwendig, das Ausmaß de.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Das übergeordnete Ziel der vorliegenden Studie ist es, zu unserem Verständnis beizutragen, wie die visuelle Wahrnehmung und Kognition des Menschen auf hoher Ebene in realen Situationen funktioniert. Diese Studie konzentrierte sich auf die Wahrnehmung von Handlungen und schlug ein naturalistisches, aber kontrollierbares experimentelles Paradigma vor, das es Forschern ermöglicht, zu testen, wie Individuen die Handlungen anderer wahrnehmen und bewerten, indem sie reale Akteure in einer Laborumgebung präsentieren.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Diese Arbeit wurde durch Zuschüsse an Burcu A. Urgen vom Scientific and Technological Research Council of Türkiye (Projektnummer: 120K913) und der Bilkent University unterstützt. Wir danken unserem Pilotteilnehmer Sena Er Elmas für die Idee, Hintergrundgeräusche zwischen den Schauspielerwechseln hinzuzufügen, Süleyman Akı für die Einrichtung des Lichtkreises und Tuvana Karaduman für die Idee, eine Überwachungskamera hinter den Kulissen zu verwenden, und für ihren Beitrag als eine der Schauspielerinnen in der Studie.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Adjustable Height TableCustom-madeN/AWidth: 60 cm, Height: 62 cm, Depth: 40 cm
Ardunio UNO Smart ProjectsA000066Microcontroller used for switching the state of the LEDs from the script running on the operator PC
Black PantsNo brandN/ARelaxed-fit pants of actors with no apparent brand name or logo.
CaseXigmatekEN43224XIGMATEK HELIOS RAINBOW LED USB 3.0 MidT ATX GAMING CASE
CPUAMDYD1600BBAFBOXAMD Ryzen 5 1600 Soket AM4 3.2 GHz - 3.6 GHz 16 MB 65 W 12 nm Processor
CurtainsCustom-madeN/AWidth: Part 1: 110 cm width from the wall (left) side, Part 2: 123 cm width above OLED display, Part 3: 170 cm from OLED display to right side, Cabin depth: 100 cm, Inside cabin depth: 100 cm, all heights 230 cm except for Part 2 (75 cm height)
Experimenter Adjustable/Swivel ChairNo brandN/AAny brand
Experimenter TableCustomN/AWidth: 160 cm, Height: 75 cm, Depth: 80 cm
GPUMSIGT 1030 2GHD4 LP OCMSI GEFORCE GT 1030 2GHD4 LP OC 2GB DDR4 64bit NVIDIA GPU
Grey-color blackout curtainCustom-madeN/AWidth: 330 cm, Height: 230 cm, used for covering the background
Hard DiskKioxiaLTC10Z240GG8Kioxia 240 GB Exceria Sata 3.0 SSD (555 MB Read/540 MB Write)
Hard DiskToshibaHDWK105UZSVAToshiba 2,5'' 500 GB L200 SATA 3.0 8 MB Cache 5400 Rpm 7 mm Harddisk
High-Power MOSFET ModuleN/AN/AHeating Controller MKS MOSFET Module
LaptopAppleS/N: C02P916ZG3QTMacBook Pro 11.1 Intel Core i7 (Used as the actor PC)
LaptopAsus UX410UUsed for monitoring the security camera in real-time.
LED lightsNo brandN/A
LED Strip Power SupplyNo brandN/AAC to DC voltage converter used for supplying DC voltage to the lighting circuit
MATLAB The MathWorks Inc., Natick, MA, USAVersion: R2022aUsed for programming the experiment.

Required Toolboxes:
MATLAB Support Package for Arduino Hardware (version 22.1.2)
Instrument Control Toolbox (version 4.6)
Psychtoolbox (version 3)
MonitorPhilipsUHB2051005145 Model ID: 242V8A/00, PHILIPS 23.8" 242V8A 4ms 75 Hz Freesync DP-HDMI+VGA IPS Gaming Monitor 
MotherboardMSIB450M-A PRO MAXMSI B450M-A PRO MAX Amd B450 Socket AM4 DDR4 3466(OC) M.2 Motherboard
Mouse Pad for participantMonster 78185721101502042 / 8699266781857Pusat Gaming Mouse Pad XL
Night lampAukesES620-0.5W 6500K-IP 20Used for helping the actors see around when the lights are off in the backstage.
Participant Adjustable/Swivel ChairNo brandN/A
Participant TableIKEASandsberg 294.203.93Width: 110 cm, Height: 75 cm, Depth: 67 cm
Power Extension CableViko9011760Y250 V (6 inlets) Black
Power Extension CableViko9011730Y250 V (3 inlets) Black
Power Extension CableViko9011330Y250 V (3 inlets) White
Power Extension Cables-link Model No: SPG3-J-10AC - 250 V 3 meter (5 inlets)
Power SupplyTHERMALTAKEPS-LTP-0550NHSANE-1THERMALTAKE LITEPOWER RGB 550W APFC 12 cm FAN PSU
Professional Gaming MouseRampage8680096Model No: SMX-R50 
RAMGSKILLF4-3000C16S-8GVRBGSKILL 8GB (1x8GB) RipjawsV Red DDR4 3000 MHz CL16 1.35 V Single Ram
Reception bellNo brandN/AUsed for helping the communication between the experimenter and the actors.
Security CameraBrion Vega2-20204210Model:BV6000
SpeakersLogitechP/N: 880-000-405 PID: WD528XMUsed for playing the background music.
Survey SoftwareQualtrics N/A
Switching ModuleNo brandN/AF5305S PMOS Switch Module
Table under the OLED displayCustom-madeN/AWidth: 123 cm, Height: 75 cm, Depth: 50 cm
Transparent OLED DisplayPlanarPN: 998-1483-01 S/N:195210075A 55-inch transparent display that showcases dynamic information, enabled the opaque and transparent usage during the experiment.
UPSEAGK200610100087EAG 110
UPSEAG210312030507EAG 103
USB 2.0 Cable Type A/B for Arduino UNO (Blue)Smart ProjectsM000006 Used to connect the microcontroller to the experimenter PC.
USB to RS232 Converter s-link8680096082559Model: SW-U610
White Long-Sleeved Blouse (2)H&M (cotton)N/ARelaxed-fit blouses with a round neckline and without ant apparent brand name or logo.
Wireless KeyboardLogitechP/N: 820-003488 S/N: 1719CE0856D8Model: K360
Wireless MouseLogitechS/N: 2147LZ96BGQ9Model: M190 (Used as the response device)

  1. Grossman, E. D., Blake, R. Brain areas active during visual perception of biological motion. Neuron. 35 (6), 1167-1175 (2002).
  2. Saygin, A. P. Superior temporal and premotor brain areas necessary for biological motion perception. Brain. 130 (9), 2452-2461 (2007).
  3. Peelen, M. V., Downing, P. E. The neural basis of visual body perception. Nature Reviews Neuroscience. 8 (8), 636-648 (2007).
  4. Caspers, S., Zilles, K., Laird, A. R., Eickhoff, S. B. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage. 50 (3), 1148-1167 (2010).
  5. Nelissen, K., et al. Action observation circuits in the macaque monkey cortex. Journal of Neuroscience. 31 (10), 3743-3756 (2011).
  6. Oosterhof, N. N., Tipper, S. P., Downing, P. E. Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences. 17 (7), 311-318 (2013).
  7. Lingnau, A., Downing, P. E. The lateral occipitotemporal cortex in action. Trends in Cognitive Sciences. 19 (5), 268-277 (2015).
  8. Giese, M. A., Rizzolatti, G. Neural and computational mechanisms of action processing: Interaction between visual and motor representations. Neuron. 88 (1), 167-180 (2015).
  9. Tucciarelli, R., Wurm, M., Baccolo, E., Lingnau, A. The representational space of observed actions. eLife. 8, e47686 (2019).
  10. Tarhan, L., Konkle, T. Sociality and interaction envelope organize visual action representations. Nature Communications. 11 (1), 3002 (2020).
  11. Urgen, B. A., Saygin, A. P. Predictive processing account of action perception: Evidence from effective connectivity in the action observation network. Cortex. 128, 132-142 (2020).
  12. Newen, A., De Bruin, L., Gallagher, S. . The Oxford Handbook of 4E Cognition. , (2018).
  13. Snow, J. C., Culham, J. C. The treachery of images: How realism influences brain and behavior. Trends in Cognitive Sciences. 25 (6), 506-519 (2021).
  14. Matusz, P. J., Dikker, S., Huth, A. G., Perrodin, C. Are we ready for real-world neuroscience. Journal of Cognitive Neuroscience. 31 (3), 327-338 (2019).
  15. Zaki, J., Ochsner, K. The need for a cognitive neuroscience of naturalistic social cognition. Annals of the New York Academy of Sciences. 1167 (1), 16-30 (2009).
  16. Hasson, U., Honey, C. J. Future trends in Neuroimaging: Neural processes as expressed within real-life contexts. NeuroImage. 62 (2), 1272-1278 (2012).
  17. Risko, E. F., Laidlaw, K. E., Freeth, M., Foulsham, T., Kingstone, A. Social attention with real versus reel stimuli: toward an empirical approach to concerns about ecological validity. Frontiers in Human Neuroscience. 6, 143 (2012).
  18. Parsons, T. D. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience. 9, 660 (2015).
  19. Deuse, L., et al. Neural correlates of naturalistic social cognition: brain-behavior relationships in healthy adults. Social Cognitive and Affective Neuroscience. 11 (11), 1741-1751 (2016).
  20. Camerer, C., Mobbs, D. Differences in behavior and brain activity during hypothetical and real choices. Trends in Cognitive Sciences. 21 (1), 46-56 (2017).
  21. Nastase, S. A., Goldstein, A., Hasson, U. Keep it real: Rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage. 222, 117254 (2020).
  22. Kihlstrom, J. F. Ecological validity and "ecological validity&#34. Perspectives on Psychological Science. 16 (2), 466-471 (2021).
  23. Brunswik, E. . Perception and the Representative Design of Psychological Experiments. , (1956).
  24. Aronson, E., Carlsmith, J. M., Gilbert, D. T., Fiske, S. T., Lindzay, G. Experimentation in social psychology. The Handbook of Social Psychology. , 1-79 (1968).
  25. Ecological validity: Then and now. University of Colorado Available from: https://www.albany.edu/cpr/brunswik/notes/essay1.html (1998)
  26. Fan, S., Dal Monte, O., Chang, S. W. Levels of naturalism in social neuroscience research. IScience. 24 (7), 102702 (2021).
  27. Orban, G. A., Lanzilotto, M., Bonini, L. From observed action identity to social affordances. Trends in Cognitive Sciences. 25 (6), 493-505 (2021).
  28. Gray, H. M., Gray, K., Wegner, D. M. Dimensions of mind perception. Science. 315 (5812), 619 (2007).
  29. Li, Z., Terfurth, L., Woller, J. P., Wiese, E. Mind the machines: Applying implicit measures of mind perception to social robotics. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI. , 236-245 (2022).
  30. Karpinski, A., Steinman, R. B. The single category implicit association test as a measure of implicit social cognition. Journal of Personality and Social Psychology. 91 (1), 16 (2006).
  31. Greenwald, A. G., McGhee, D. E., Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. Journal of Personality and Social Psychology. 74 (6), 1464 (1998).
  32. Freeman, J. B., Ambady, N. MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods. 42 (1), 226-241 (2010).
  33. Pekçetin, T. N., Barinal, B., Tunç, J., Acarturk, C., Urgen, B. A. Studying mind perception in social robotics implicitly: The need for validation and norming. Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction. , 202-210 (2023).
  34. Yu, Z., Wang, F., Wang, D., Bastin, M. Beyond reaction times: Incorporating mouse-tracking measures into the implicit association test to examine its underlying process. Social Cognition. 30 (3), 289-306 (2012).
  35. Romero, C. A., Snow, J. C. Methods for presenting real-world objects under controlled laboratory conditions. Journal of Visualized Experiments. (148), e59762 (2019).
  36. Jastorff, J., Abdollahi, R. O., Fasano, F., Orban, G. A. Seeing biological actions in 3 D: An f MRI study. Human Brain Mapping. 37 (1), 203-219 (2016).
  37. Ferri, S., Pauwels, K., Rizzolatti, G., Orban, G. A. Stereoscopically observing manipulative actions. Cerebral Cortex. 26 (8), 3591-3610 (2016).
  38. Stangl, M., Maoz, S. L., Suthana, N. Mobile cognition: Imaging the human brain in the 'real world. Nature Reviews Neuroscience. 24 (6), 347-362 (2023).
  39. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science. 1, 417-446 (2015).
  40. Marblestone, A. H., Wayne, G., Kording, K. P. Toward an integration of deep learning and neuroscience. Frontiers in Computational Neuroscience. 10, 94 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved