JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Alignment of Synchronized Time-Series Data Using the Characterizing Loss of Cell Cycle Synchrony Model for Cross-Experiment Comparisons

Published: June 9th, 2023

DOI:

10.3791/65466

1Department of Biology, Duke University, 2Department of Biology, University of Massachusetts, 3Orlando Data Science LLC, 4Department of Computer Science, Duke University

Investigating the cell cycle often depends on synchronizing cell populations to measure various parameters in a time series as the cells traverse the cell cycle. However, even under similar conditions, replicate experiments display differences in the time required to recover from synchrony and to traverse the cell cycle, thus preventing direct comparisons at each time point. The problem of comparing dynamic measurements across experiments is exacerbated in mutant populations or in alternative growth conditions that affect the synchrony recovery time and/or the cell-cycle period.

We have previously published a parametric mathematical model named Characterizing Loss of Cell Cycle Synchrony (CLOCCS) that monitors how synchronous populations of cells release from synchrony and progress through the cell cycle. The learned parameters from the model can then be used to convert experimental time points from synchronized time-series experiments into a normalized time scale (lifeline points). Rather than representing the elapsed time in minutes from the start of the experiment, the lifeline scale represents the progression from synchrony to cell-cycle entry and then through the phases of the cell cycle. Since lifeline points correspond to the phase of the average cell within the synchronized population, this normalized time scale allows for direct comparisons between experiments, including those with varying periods and recovery times. Furthermore, the model has been used to align cell-cycle experiments between different species (e.g., Saccharomyces cerevisiae and Schizosaccharomyces pombe), thus enabling direct comparison of cell-cycle measurements, which may reveal evolutionary similarities and differences.

Tags

Keywords Time series Data Alignment

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved