JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

在宏观水凝胶中包埋无细胞蛋白质合成反应的方法

Published: June 23rd, 2023

DOI:

10.3791/65500

1School of Natural and Environmental Sciences, Newcastle University, 2Department of Life Sciences, Imperial College London
* These authors contributed equally

在这里,我们提出了两种方案,用于在宏观尺度的水凝胶基质中嵌入无细胞蛋白质合成反应,而无需外部液相。

合成基因网络为科学家和工程师提供了一个平台,以设计和构建具有遗传水平编码功能的新系统。虽然部署基因网络的主要范式是在细胞底盘内,但合成基因网络也可以部署在无细胞环境中。无细胞基因网络的有前途的应用包括生物传感器,因为这些设备已被证明可对抗生物(埃博拉、寨卡和SARS-CoV-2病毒)和非生物(重金属、硫化物、杀虫剂和其他有机污染物)靶标。无孔系统通常以液体形式部署在反应容器内。然而,能够将这些反应嵌入物理基质中,可能有助于它们在更广泛的环境中得到更广泛的应用。为此,已经开发了在各种水凝胶基质中嵌入无细胞蛋白质合成(CFPS)反应的方法。有利于这项工作的水凝胶的关键特性之一是水凝胶材料的高水重构能力。此外,水凝胶具有对功能有益的物理和化学特性。水凝胶可以冷冻干燥以备后用,并重新水化以备后用。介绍了两种分步方案,用于在水凝胶中包含和测定CFPS反应。首先,CFPS系统可以通过细胞裂解物的再水化 入水凝胶中。然后可以诱导或表达水凝胶内的系统,以便通过水凝胶完全表达蛋白质。其次,细胞裂解物可以在聚合点引入水凝胶中,整个系统可以在稍后点用含有水凝胶内编码的表达系统诱导剂的水溶液冷冻干燥和再水化。这些方法有可能允许无细胞基因网络,赋予水凝胶材料感官能力,并有可能在实验室之外部署。

合成生物学整合了不同的工程学科,以设计和制造基于生物的部件、设备和系统,这些部件、设备和系统可以执行自然界中没有的功能。大多数合成生物学方法仍然与活细胞结合。相比之下,无细胞合成生物学系统促进了前所未有的控制和设计自由度,提高了工程生物系统的灵活性并缩短了时间,同时消除了传统基于细胞的基因表达方法的许多限制1,2,3CFPS正被用于众多学科的越来越多的应用,包括构建人造细胞,原型遗传电路,开发生物传感器和生产代谢物4,5,6CFPS对于生产在活细胞中不易表达的重组蛋白也特别有用,例如易聚集蛋白,跨膜蛋白和有毒蛋白6,7,8

CFPS通常在液体反应中进行。然而,在某些情况下,这可能会限制它们的部署,因为任何无液体电池装置都必须包含在反应容器中。开发这里介绍的方法的基本原理是为将无细胞合成生物学设备嵌入水凝胶提供强大的方....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. 细胞裂解物缓冲液和培养基制备

  1. 制备2x YT+P琼脂和培养基
    1. 通过测量 16 g/L 胰蛋白胨、10 g/L 酵母提取物、5 g/L NaCl、40 mL/L 1 M K 2 HPO 4、22 mL/L 1 M KH2PO4 和 15 g/L 琼脂来制备 2x YT+P 琼脂。对于 2x YT+P 肉汤,遵循之前的成分,但省略琼脂。
    2. 通过高压灭菌 2x YT+P 进行灭菌。
  2. S30A缓冲液的制备
    1. 用 5.88 g/L 镁谷氨酸、12.195 g/.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

该协议详细介绍了将CFPS反应嵌入水凝胶基质中的两种方法, 图1 提供了两种方法的示意图。这两种方法都适合冷冻干燥和长期储存。方法A是最常用的方法,原因有两个。首先,它已被证明是处理一系列水凝胶材料的最适用方法11。其次,方法A允许对基因结构进行平行测试。方法B更适合于制造优化的系统和现场部署。两种方案都允许一次性制备多个样品,?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这里概述了将基于 大肠杆菌 细胞裂解物的CFPS反应掺入琼脂糖水凝胶的两种方案。这些方法允许在整个材料中同时表达基因。该方案可适用于其他CFPS系统,除了此处详述的实验室制备的细胞裂解物外,还已成功使用市售的CFPS试剂盒进行。重要的是,该方案允许在没有外部液相的情况下进行基因表达。这意味着该系统是独立的,不需要无细胞反应槽。与以前在水凝胶内发生CFPS反应的方法不?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

作者非常感谢生物技术和生物科学研究委员会奖BB/V017551/1(S.K.,T.P.H.)和BB/W01095X/1(A.L.,T.P.H.)以及工程和物理科学研究委员会-国防科学和技术实验室奖EP/N026683/1(C.J.W.,A.M.B.,T.P.H.)的支持。支持本出版物的数据可在以下网址公开获得:10.25405/data.ncl.22232452。出于开放获取的目的,作者已将知识共享署名(CC BY)许可应用于任何作者接受的手稿版本。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Material
3-PGASanta Cruz Biotechnologysc-214793B
Acetic AcidSigma-AldrichA6283
AgarThermo Fisher ScientificA10752.22
AgaroseSevern Biotech30-15-50
Amino Acid Sampler KitVWRBTRABR1401801
ATPSigma-AldrichA8937-1G
cAMPSigma-AldrichA9501-1G
Coenzyme A (CoA)Sigma-AldrichC4282-100MG
CTPAlfa AesarJ14121.MC
DTTThermo Fisher ScientificR0862
Folinic AcidSigma-AldrichF7878-100MG
GTPCarbosynthNG01208
HEPESSigma-AldrichH4034-25G
K-glutamateSigma-AldrichG1149-100G
LysozymeSigma-AldrichL6876-1G
Mg-glutamateSigma-Aldrich49605-250G
NADSigma-AldrichN6522-250MG
PEG-8000PromegaV3011
Potassium Hydroxide (KOH)Sigma-Aldrich757551-5G
Potassium Phosphate Dibasic (K2HPO4)Sigma-AldrichP3786-500G
Potassium Phosphate Monobasic (KH2PO4)Sigma-AldrichRDD037-500G
Protease Inhibitor cocktailSigma-AldrichP2714-1BTL
Qubit Protein concentration kitThermo Fisher ScientificA50668
Rossetta 2 DE 3 E.coliSigma-Aldrich71397-3
Sodium Chloride (NaCl)Sigma-AldrichS9888-500G
SpermidineSigma-Aldrich85558-1G
TryptoneThermo Fisher Scientific211705
TrisSigma-AldrichGE17-1321-01
tRNASigma-Aldrich10109541001
UTPAlfa AesarJ23160.MC
Yeast ExtractSigma-AldrichY1625-1KG
Equipment
1.5 mL microcentrifuge tubesSigma-AldrichHS4323-500EA
10K MWCO dialysis cassettesThermo Fisher Scientific66381
15 mL centrifuge tubeSarstedt62.554.502
50 mL centrifuge bottlesSarstedt62.547.254
500 mL centrifuge bottlesThermo Fisher Scientific3120-9500
Alpha 1-2 LD Plus freeze-dryerChristpart no. 101521, 101522, 101527
Benchtop CentrifugeThermo Fisher ScientificH-X3R
Black 384 well microtitre platesFischer Scientific66
CuvettesThermo Fisher Scientific222S
Elga Purelab ChorusElga#####
Eppendorf Microcentrifuge 5425REppendorfEP00532
High Speed CentrifugeBeckman CoulterB34183
JMP licenseSAS Institute15
Magnetic StirrerFischer Scientific15353518
ParafilmAmcorPM-966
Photospectrometer (Biophotometer)Eppendorf16713
Pipettes and tipsGilson#####
Precision BalanceSartorius16384738
Qubit 2.0 FluorometerThermo Fisher ScientificQ32866
Shaking IncubatorThermo Fisher ScientificSHKE8000
Sonic Dismembrator (Sonicator)Thermo Fisher Scientific12893543
Static IncubatorSanyoMIR-162
Syringe and needlesThermo Fisher Scientific66490
Thermo max Q8000 (Shaking Incubator)Thermo Fisher ScientificSHKE8000
Varioskan Lux platereaderThermo Fisher ScientificVLBL00GD1
Vortex Genie 2Cole-parmerOU-04724-05
VWR PHenomenal pH 1100 L, ph/mv/°c meterVWR662-1657

  1. Lu, Y. Cell-free synthetic biology: Engineering in an open world. Synthetic and System Biotechnology. 2 (1), 23-27 (2017).
  2. Perez, J. G., Stark, J. C., Jewett, M. C. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harbor Perspectives in Biology. 8 (12), e023853 (2016).
  3. Jiang, L., Zhao, J., Lian, J., Xu, Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synthetic and System Biotechnology. 3 (2), 90-96 (2018).
  4. Kopniczky, M. B., et al. Cell-free protein synthesis as a prototyping platform for mammalian synthetic biology. ACS Synthetic Biology. 9 (1), 144-156 (2020).
  5. Pandi, A., Grigoras, I., Borkowski, O., Faulon, J. L. Optimizing cell-free biosensors to monitor enzymatic production. ACS Synthetic Biology. 8 (8), 1952-1957 (2019).
  6. Khambhati, K., Bhattacharjee, G., Gohil, N., Braddick, D., Kulkarni, V. S. V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Frontiers in Bioengineering and Biotechnology. 7, 248 (2019).
  7. Focke, P. J., et al. Combining in vitro folding with cell free protein synthesis for membrane protein expression. Biochemistry. 55 (30), 4212-4219 (2016).
  8. Fogeron, M. L., Lecoq, L., Cole, L., Harbers, M., Böckmann, A. Easy synthesis of complex biomolecular assemblies: wheat germ cell-free protein expression in structural biology. Frontiers in Molecular Biosciences. 8, 63958 (2021).
  9. Bashir, S., et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 12 (11), 2702 (2020).
  10. Loo, S. L., Vásquez, L., Athanassiou, A., Fragouli, D. Polymeric hydrogels-A promising platform in enhancing water security for a sustainable future. Advanced Material Interfaces. 8 (24), 2100580 (2021).
  11. Whitfield, C. J., et al. Cell-free protein synthesis in hydrogel materials. Chemical Communications. 56 (52), 7108-7111 (2020).
  12. Yao, H., et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Materials Today Bio. 15, 100429 (2022).
  13. Musgrave, C. S. A., Fang, F. Contact lens materials: A materials science perspective. Materials. 12 (2), 261 (2019).
  14. Maher, A. J., Rana, A. G., Rawan, A. Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. Journal of Environmental Management. 239, 255-261 (2019).
  15. Vigata, M., Meinert, C., Hutmacher, D. W., Bock, N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics. 12 (12), 1188 (2020).
  16. Jacob, S., et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 3 (3), 357 (2021).
  17. Senapati, S., et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 3, 7 (2018).
  18. Chen, Y., et al. A biocompatible, stimuli-responsive, and injectable hydrogel with triple dynamic bonds. Molecules. 25 (13), 3050 (2020).
  19. Shi, Q., et al. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials. 11, 64 (2019).
  20. Fan, M., Tan, H. Biocompatible conjugation for biodegradable hydrogels as drug and cell scaffolds. Cogent Engineering. 7 (1), 1736407 (2020).
  21. Byun, J. Y., Lee, K. H., Lee, K. Y., Kim, M. G., Kim, D. M. In-gel expression and in situ immobilization of proteins for generation of three-dimensional protein arrays in a hydrogel matrix. Lab on a Chip. 13 (5), 886-891 (2013).
  22. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  23. Huang, A., et al. BiobitsTM explorer: A modular synthetic biology education kit. Science Advances. 4 (8), 5105 (2018).
  24. Jaramillo-Isaza, S., Alfonso-Rodriguez, C. A., Rios-Rojas, J. F., García-Guzmán, J. A. Dynamic mechanical analysis of agarose-based biopolymers with potential use in regenerative medicine. Materials Today Proceeding. 49, 16-22 (2022).
  25. Wang, B. X., Xu, W., Yang, Z., Wu, Y. An overview on recent progress of the hydrogels: from material resources, properties to functional applications. Macromolecular Rapid Communications. 43 (6), 2100785 (2022).
  26. Salati, M. A., et al. Agarose-based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers. 12 (5), 1150 (2020).
  27. Buddingh, B. C., Van Hest, J. C. M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity. Accounts of Chemical Research. 50 (4), 769-777 (2017).
  28. Kahn, J. S., et al. DNA microgels as a platform for cell-free protein expression and display. Biomacromolecules. 17 (6), 2019-2026 (2016).
  29. Yang, D., et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Scientific Reports. 3, 3165 (2013).
  30. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  31. Whitfield, C. J., et al. Cell-free genetic devices confer autonomic and adaptive properties to hydrogels. BioRxiv. , (2019).
  32. Feng, L., Jianpu, T., Jinhui, G. D., Luo, D. Y. Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science. 98, 101163 (2019).
  33. Howard, T., et al. Datasets for Whitfield et al. 2020 Chemical Communications. , (2020).
  34. Banks, A. M., et al. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Computational and Structural Biotechnology Journal. 20, 218-229 (2022).
  35. Sun, Z. Z., et al. Protocols for implementing an Escherichia coli-based TX-TL cell-free expression system for synthetic biology. Journal of Visualized Experiments. (79), e50762 (2013).
  36. Moore, S. J., et al. EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology. 5 (10), 1059-1069 (2016).
  37. Benítez-Mateos, A. I., et al. Micro compartmentalized cell-free protein synthesis in hydrogel µ-channels. ACS Synthetic Biology. 9 (11), 2971-2978 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved