JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Metoder til indlejring af cellefrie proteinsyntesereaktioner i hydrogeler i makroskala

Published: June 23rd, 2023

DOI:

10.3791/65500

1School of Natural and Environmental Sciences, Newcastle University, 2Department of Life Sciences, Imperial College London
* These authors contributed equally

Her præsenterer vi to protokoller til indlejring af cellefrie proteinsyntesereaktioner i hydrogelmatricer i makroskala uden behov for en ekstern væskefase.

Syntetiske gennetværk giver en platform for forskere og ingeniører til at designe og bygge nye systemer med funktionalitet kodet på et genetisk niveau. Mens det dominerende paradigme for udbredelsen af gennetværk er inden for et cellulært chassis, kan syntetiske gennetværk også anvendes i cellefrie miljøer. Lovende anvendelser af cellefrie gennetværk inkluderer biosensorer, da disse enheder er blevet demonstreret mod biotiske (Ebola-, Zika- og SARS-CoV-2-vira) og abiotiske (tungmetaller, sulfider, pesticider og andre organiske forurenende stoffer) mål. Cellefrie systemer implementeres typisk i flydende form i en reaktionsbeholder. At være i stand til at integrere sådanne reaktioner i en fysisk matrix kan imidlertid lette deres bredere anvendelse i et bredere sæt miljøer. Til dette formål er der udviklet metoder til indlejring af cellefri proteinsyntese (CFPS) reaktioner i en række hydrogelmatricer. En af de vigtigste egenskaber ved hydrogeler, der bidrager til dette arbejde, er hydrogelmaterialernes højvandsrekonstitutionskapacitet. Derudover har hydrogeler fysiske og kemiske egenskaber, der er funktionelt gavnlige. Hydrogeler kan frysetørres til opbevaring og rehydreres til senere brug. To trinvise protokoller til inkludering og analyse af CFPS-reaktioner i hydrogeler præsenteres. For det første kan et CFPS-system inkorporeres i en hydrogel via rehydrering med et cellelysat. Systemet i hydrogelen kan derefter induceres eller udtrykkes konstitutivt for fuldstændig proteinekspression gennem hydrogelen. For det andet kan cellelysat indføres i en hydrogel ved polymerisationspunktet, og hele systemet kan frysetørres og rehydreres på et senere tidspunkt med en vandig opløsning indeholdende induceren til ekspressionssystemet kodet i hydrogelen. Disse metoder har potentialet til at muliggøre cellefrie gennetværk, der giver sensoriske evner til hydrogelmaterialer, med potentiale for udbredelse uden for laboratoriet.

Syntetisk biologi integrerer forskellige tekniske discipliner til at designe og konstruere biologisk baserede dele, enheder og systemer, der kan udføre funktioner, der ikke findes i naturen. De fleste syntetiske biologiske tilgange er stadig bundet til levende celler. I modsætning hertil muliggør cellefrie syntetiske biologiske systemer hidtil usete niveauer af kontrol og frihed i design, hvilket muliggør øget fleksibilitet og en forkortet tid til konstruktion af biologiske systemer, samtidig med at mange af begrænsningerne ved traditionelle cellebaserede genekspressionsmetoder elimineres1,2,3.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Cellelysatbuffer og medieforberedelse

  1. Fremstilling af 2x YT+P agar og medium
    1. Forbered 2x YT+P agar ved at afmåle 16 g/L trypton, 10 g/L gærekstrakt, 5 g/L NaCl, 40 ml/L 1 M K 2 HPO 4, 22 ml/L 1 M KH2PO4 og 15 g/L agar. For 2x YT + P bouillon skal du følge den foregående sammensætning, men udelade agaren.
    2. Steriliser ved at autoklavere 2x YT+P.
  2. Forberedelse af S30A-bufferen
    1. S30A-bufferen fremstilles.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Denne protokol beskriver to metoder til indlejring af CFPS-reaktioner i hydrogelmatricer, hvor figur 1 viser en skematisk oversigt over de to tilgange. Begge metoder kan frysetørres og langtidsopbevares. Metode A er den mest anvendte metode af to grunde. For det første har det vist sig at være den mest anvendelige metode til at arbejde med en række hydrogelmaterialer11. For det andet giver metode A mulighed for parallel testning af genetiske konstruktioner. Metod.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Skitseret her er to protokoller til inkorporering af E. coli-cellelysatbaserede CFPS-reaktioner i agarosehydrogeler . Disse metoder muliggør samtidig genekspression i hele materialet. Protokollen kan tilpasses til andre CFPS-systemer og er med succes blevet gennemført med kommercielt tilgængelige CFPS-sæt ud over de laboratoriefremstillede cellelysater, der er beskrevet her. Det er vigtigt, at protokollen tillader genekspression i fravær af en ekstern væskefase. Det betyder, at systemet er selvstændigt og.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Forfatterne anerkender i høj grad støtten fra Biotechnology and Biological Sciences Research Council awards BB/V017551/1 (S.K., T.P.H.) og BB/W01095X/1 (A.L., T.P.H.) og Engineering and Physical Sciences Research Council - Defence Science and Technology Laboratories award EP/N026683/1 (C.J.W., A.M.B., T.P.H.). Data til støtte for denne publikation er frit tilgængelige på: 10.25405/data.ncl.22232452. Med henblik på fri adgang har forfatteren anvendt en Creative Commons Attribution (CC BY) licens til enhver Author Accepted Manuscript version, der opstår.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Material
3-PGASanta Cruz Biotechnologysc-214793B
Acetic AcidSigma-AldrichA6283
AgarThermo Fisher ScientificA10752.22
AgaroseSevern Biotech30-15-50
Amino Acid Sampler KitVWRBTRABR1401801
ATPSigma-AldrichA8937-1G
cAMPSigma-AldrichA9501-1G
Coenzyme A (CoA)Sigma-AldrichC4282-100MG
CTPAlfa AesarJ14121.MC
DTTThermo Fisher ScientificR0862
Folinic AcidSigma-AldrichF7878-100MG
GTPCarbosynthNG01208
HEPESSigma-AldrichH4034-25G
K-glutamateSigma-AldrichG1149-100G
LysozymeSigma-AldrichL6876-1G
Mg-glutamateSigma-Aldrich49605-250G
NADSigma-AldrichN6522-250MG
PEG-8000PromegaV3011
Potassium Hydroxide (KOH)Sigma-Aldrich757551-5G
Potassium Phosphate Dibasic (K2HPO4)Sigma-AldrichP3786-500G
Potassium Phosphate Monobasic (KH2PO4)Sigma-AldrichRDD037-500G
Protease Inhibitor cocktailSigma-AldrichP2714-1BTL
Qubit Protein concentration kitThermo Fisher ScientificA50668
Rossetta 2 DE 3 E.coliSigma-Aldrich71397-3
Sodium Chloride (NaCl)Sigma-AldrichS9888-500G
SpermidineSigma-Aldrich85558-1G
TryptoneThermo Fisher Scientific211705
TrisSigma-AldrichGE17-1321-01
tRNASigma-Aldrich10109541001
UTPAlfa AesarJ23160.MC
Yeast ExtractSigma-AldrichY1625-1KG
Equipment
1.5 mL microcentrifuge tubesSigma-AldrichHS4323-500EA
10K MWCO dialysis cassettesThermo Fisher Scientific66381
15 mL centrifuge tubeSarstedt62.554.502
50 mL centrifuge bottlesSarstedt62.547.254
500 mL centrifuge bottlesThermo Fisher Scientific3120-9500
Alpha 1-2 LD Plus freeze-dryerChristpart no. 101521, 101522, 101527
Benchtop CentrifugeThermo Fisher ScientificH-X3R
Black 384 well microtitre platesFischer Scientific66
CuvettesThermo Fisher Scientific222S
Elga Purelab ChorusElga#####
Eppendorf Microcentrifuge 5425REppendorfEP00532
High Speed CentrifugeBeckman CoulterB34183
JMP licenseSAS Institute15
Magnetic StirrerFischer Scientific15353518
ParafilmAmcorPM-966
Photospectrometer (Biophotometer)Eppendorf16713
Pipettes and tipsGilson#####
Precision BalanceSartorius16384738
Qubit 2.0 FluorometerThermo Fisher ScientificQ32866
Shaking IncubatorThermo Fisher ScientificSHKE8000
Sonic Dismembrator (Sonicator)Thermo Fisher Scientific12893543
Static IncubatorSanyoMIR-162
Syringe and needlesThermo Fisher Scientific66490
Thermo max Q8000 (Shaking Incubator)Thermo Fisher ScientificSHKE8000
Varioskan Lux platereaderThermo Fisher ScientificVLBL00GD1
Vortex Genie 2Cole-parmerOU-04724-05
VWR PHenomenal pH 1100 L, ph/mv/°c meterVWR662-1657

  1. Lu, Y. Cell-free synthetic biology: Engineering in an open world. Synthetic and System Biotechnology. 2 (1), 23-27 (2017).
  2. Perez, J. G., Stark, J. C., Jewett, M. C. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harbor Perspectives in Biology. 8 (12), e023853 (2016).
  3. Jiang, L., Zhao, J., Lian, J., Xu, Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synthetic and System Biotechnology. 3 (2), 90-96 (2018).
  4. Kopniczky, M. B., et al. Cell-free protein synthesis as a prototyping platform for mammalian synthetic biology. ACS Synthetic Biology. 9 (1), 144-156 (2020).
  5. Pandi, A., Grigoras, I., Borkowski, O., Faulon, J. L. Optimizing cell-free biosensors to monitor enzymatic production. ACS Synthetic Biology. 8 (8), 1952-1957 (2019).
  6. Khambhati, K., Bhattacharjee, G., Gohil, N., Braddick, D., Kulkarni, V. S. V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Frontiers in Bioengineering and Biotechnology. 7, 248 (2019).
  7. Focke, P. J., et al. Combining in vitro folding with cell free protein synthesis for membrane protein expression. Biochemistry. 55 (30), 4212-4219 (2016).
  8. Fogeron, M. L., Lecoq, L., Cole, L., Harbers, M., Böckmann, A. Easy synthesis of complex biomolecular assemblies: wheat germ cell-free protein expression in structural biology. Frontiers in Molecular Biosciences. 8, 63958 (2021).
  9. Bashir, S., et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 12 (11), 2702 (2020).
  10. Loo, S. L., Vásquez, L., Athanassiou, A., Fragouli, D. Polymeric hydrogels-A promising platform in enhancing water security for a sustainable future. Advanced Material Interfaces. 8 (24), 2100580 (2021).
  11. Whitfield, C. J., et al. Cell-free protein synthesis in hydrogel materials. Chemical Communications. 56 (52), 7108-7111 (2020).
  12. Yao, H., et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Materials Today Bio. 15, 100429 (2022).
  13. Musgrave, C. S. A., Fang, F. Contact lens materials: A materials science perspective. Materials. 12 (2), 261 (2019).
  14. Maher, A. J., Rana, A. G., Rawan, A. Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. Journal of Environmental Management. 239, 255-261 (2019).
  15. Vigata, M., Meinert, C., Hutmacher, D. W., Bock, N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics. 12 (12), 1188 (2020).
  16. Jacob, S., et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 3 (3), 357 (2021).
  17. Senapati, S., et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 3, 7 (2018).
  18. Chen, Y., et al. A biocompatible, stimuli-responsive, and injectable hydrogel with triple dynamic bonds. Molecules. 25 (13), 3050 (2020).
  19. Shi, Q., et al. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials. 11, 64 (2019).
  20. Fan, M., Tan, H. Biocompatible conjugation for biodegradable hydrogels as drug and cell scaffolds. Cogent Engineering. 7 (1), 1736407 (2020).
  21. Byun, J. Y., Lee, K. H., Lee, K. Y., Kim, M. G., Kim, D. M. In-gel expression and in situ immobilization of proteins for generation of three-dimensional protein arrays in a hydrogel matrix. Lab on a Chip. 13 (5), 886-891 (2013).
  22. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  23. Huang, A., et al. BiobitsTM explorer: A modular synthetic biology education kit. Science Advances. 4 (8), 5105 (2018).
  24. Jaramillo-Isaza, S., Alfonso-Rodriguez, C. A., Rios-Rojas, J. F., García-Guzmán, J. A. Dynamic mechanical analysis of agarose-based biopolymers with potential use in regenerative medicine. Materials Today Proceeding. 49, 16-22 (2022).
  25. Wang, B. X., Xu, W., Yang, Z., Wu, Y. An overview on recent progress of the hydrogels: from material resources, properties to functional applications. Macromolecular Rapid Communications. 43 (6), 2100785 (2022).
  26. Salati, M. A., et al. Agarose-based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers. 12 (5), 1150 (2020).
  27. Buddingh, B. C., Van Hest, J. C. M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity. Accounts of Chemical Research. 50 (4), 769-777 (2017).
  28. Kahn, J. S., et al. DNA microgels as a platform for cell-free protein expression and display. Biomacromolecules. 17 (6), 2019-2026 (2016).
  29. Yang, D., et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Scientific Reports. 3, 3165 (2013).
  30. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  31. Whitfield, C. J., et al. Cell-free genetic devices confer autonomic and adaptive properties to hydrogels. BioRxiv. , (2019).
  32. Feng, L., Jianpu, T., Jinhui, G. D., Luo, D. Y. Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science. 98, 101163 (2019).
  33. Howard, T., et al. Datasets for Whitfield et al. 2020 Chemical Communications. , (2020).
  34. Banks, A. M., et al. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Computational and Structural Biotechnology Journal. 20, 218-229 (2022).
  35. Sun, Z. Z., et al. Protocols for implementing an Escherichia coli-based TX-TL cell-free expression system for synthetic biology. Journal of Visualized Experiments. (79), e50762 (2013).
  36. Moore, S. J., et al. EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology. 5 (10), 1059-1069 (2016).
  37. Benítez-Mateos, A. I., et al. Micro compartmentalized cell-free protein synthesis in hydrogel µ-channels. ACS Synthetic Biology. 9 (11), 2971-2978 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved