JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

マクロスケールハイドロゲルへの無細胞タンパク質合成反応の埋め込み法

Published: June 23rd, 2023

DOI:

10.3791/65500

1School of Natural and Environmental Sciences, Newcastle University, 2Department of Life Sciences, Imperial College London
* These authors contributed equally

ここでは、外液相を必要とせずに、無細胞タンパク質合成反応をマクロスケールのヒドロゲルマトリックスに組み込むための2つのプロトコルを紹介します。

合成遺伝子ネットワークは、科学者やエンジニアが遺伝子レベルでエンコードされた機能を備えた新しいシステムを設計および構築するためのプラットフォームを提供します。遺伝子ネットワークの展開のための支配的なパラダイムは細胞シャーシ内にありますが、合成遺伝子ネットワークは無細胞環境でも展開できます。無細胞遺伝子ネットワークの有望な用途には、バイオセンサーが含まれ、これらのデバイスは生物(エボラ、ジカ、およびSARS-CoV-2ウイルス)および非生物的(重金属、硫化物、農薬、およびその他の有機汚染物質)の標的に対して実証されています。無細胞システムは通常、反応容器内に液体の形で展開されます。しかし、このような反応を物理マトリックスに埋め込むことができれば、より広い環境でのより広範な適用が容易になる可能性があります。この目的のために、無細胞タンパク質合成(CFPS)反応を様々なヒドロゲルマトリックスに組み込む方法が開発されている。この作業に役立つヒドロゲルの重要な特性の1つは、ヒドロゲル材料の高い水再構成能力です。さらに、ヒドロゲルは、機能的に有益な物理的および化学的特性を有する。ヒドロゲルは、貯蔵のために凍結乾燥し、後で使用するために再水和することができる。ヒドロゲルにCFPS反応を含めることとアッセイするための2つの段階的なプロトコルが提示されます。まず、CFPSシステムは、細胞ライセートによる再水和 を介して ヒドロゲルに組み込むことができます。次いで、ヒドロゲル内の系を構成的に誘導または発現させて、ヒドロゲルを介した完全なタンパク質発現を得ることができる。第2に、細胞ライセートを重合時点でヒドロゲルに導入することができ、システム全体を凍結乾燥し、ヒドロゲル内にコードされた発現系の誘導物質を含む水溶液で後で再水和することができる。これらの方法は、ヒドロゲル材料に感覚能力を付与する無細胞遺伝子ネットワークを可能にする可能性があり、実験室を超えて展開する可能性があります。

合成生物学は、多様な工学分野を統合して、自然界には見られない機能を実行できる生物学的ベースの部品、デバイス、およびシステムを設計およびエンジニアリングします。ほとんどの合成生物学のアプローチは、依然として生細胞に結びついています。対照的に、無細胞合成生物学システムは、前例のないレベルの制御と設計の自由度を促進し、従来の細胞ベースの遺伝子発現法の制約の多くを排除しながら、生物学的システムのエンジニアリングの柔軟性を高め、時間を短縮します1,2,3CFPSは、人工細胞の構築、遺伝子回路のプロトタイピング、バイオセンサーの開発、代謝物の生成など、多くの分野でますます多くのアプリケーションで使用されています4,5,6CFPSは、凝集しやすいタンパク質、膜貫通タンパク質、毒性タンパク質など、生細胞では容易に発現できない組換えタンパク質の産生にも特に有用です6,7,8

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. 細胞ライセートバッファーおよび培地調製

  1. 2x YT+P寒天培地の調製
    1. 16 g/L トリプトン、10 g/L 酵母エキス、5 g/L NaCl、40 mL/L 1 M K 2 HPO 4、22 mL/L 1 M KH2PO4、および 15 g/L 寒天を測定して、2x YT+P寒天を調製します。2x YT + Pブロスの場合は、前の組成に従いますが、寒天は省略します。
    2. 2x YT+Pをオートクレーブして滅菌します。

Log in or to access full content. Learn more about your institution’s access to JoVE content here

このプロトコルでは、CFPS反応をヒドロゲルマトリックスに組み込むための2つの方法について詳しく説明しており、 図1 は2つのアプローチの概略的な概要を示しています。どちらの方法も凍結乾燥と長期保存に適しています。方法Aは、2つの理由から最も利用されている方法です。第1に、ある範囲のヒドロゲル材料11を扱うための最も適用可能な方法?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

ここでは、 大腸菌 細胞ライセートベースのCFPS反応をアガロースヒドロゲルに組み込むための2つのプロトコルについて概説します。これらの方法は、材料全体で同時に遺伝子発現を可能にします。このプロトコルは、他のCFPSシステムにも適用でき、ここで詳しく説明する実験室で調製された細胞ライセートに加えて、市販のCFPSキットを使用して成功裏に実施されています。重要なこ?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

著者らは、バイオテクノロジーおよび生物科学研究評議会賞BB/V017551/1(S.K.、T.P.H.)およびBB/W01095X/1(A.L.、T.P.H.)、および工学物理科学研究評議会-防衛科学技術研究所賞EP/N026683/1(C.J.W.、A.M.B.、T.P.H.)の支援に大いに感謝しています。この出版物を裏付けるデータは、10.25405/data.ncl.22232452で公開されています。オープンアクセスの目的で、著者は、著者が受理した原稿のバージョンにクリエイティブコモンズ表示(CC BY)ライセンスを適用しています。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Material
3-PGASanta Cruz Biotechnologysc-214793B
Acetic AcidSigma-AldrichA6283
AgarThermo Fisher ScientificA10752.22
AgaroseSevern Biotech30-15-50
Amino Acid Sampler KitVWRBTRABR1401801
ATPSigma-AldrichA8937-1G
cAMPSigma-AldrichA9501-1G
Coenzyme A (CoA)Sigma-AldrichC4282-100MG
CTPAlfa AesarJ14121.MC
DTTThermo Fisher ScientificR0862
Folinic AcidSigma-AldrichF7878-100MG
GTPCarbosynthNG01208
HEPESSigma-AldrichH4034-25G
K-glutamateSigma-AldrichG1149-100G
LysozymeSigma-AldrichL6876-1G
Mg-glutamateSigma-Aldrich49605-250G
NADSigma-AldrichN6522-250MG
PEG-8000PromegaV3011
Potassium Hydroxide (KOH)Sigma-Aldrich757551-5G
Potassium Phosphate Dibasic (K2HPO4)Sigma-AldrichP3786-500G
Potassium Phosphate Monobasic (KH2PO4)Sigma-AldrichRDD037-500G
Protease Inhibitor cocktailSigma-AldrichP2714-1BTL
Qubit Protein concentration kitThermo Fisher ScientificA50668
Rossetta 2 DE 3 E.coliSigma-Aldrich71397-3
Sodium Chloride (NaCl)Sigma-AldrichS9888-500G
SpermidineSigma-Aldrich85558-1G
TryptoneThermo Fisher Scientific211705
TrisSigma-AldrichGE17-1321-01
tRNASigma-Aldrich10109541001
UTPAlfa AesarJ23160.MC
Yeast ExtractSigma-AldrichY1625-1KG
Equipment
1.5 mL microcentrifuge tubesSigma-AldrichHS4323-500EA
10K MWCO dialysis cassettesThermo Fisher Scientific66381
15 mL centrifuge tubeSarstedt62.554.502
50 mL centrifuge bottlesSarstedt62.547.254
500 mL centrifuge bottlesThermo Fisher Scientific3120-9500
Alpha 1-2 LD Plus freeze-dryerChristpart no. 101521, 101522, 101527
Benchtop CentrifugeThermo Fisher ScientificH-X3R
Black 384 well microtitre platesFischer Scientific66
CuvettesThermo Fisher Scientific222S
Elga Purelab ChorusElga#####
Eppendorf Microcentrifuge 5425REppendorfEP00532
High Speed CentrifugeBeckman CoulterB34183
JMP licenseSAS Institute15
Magnetic StirrerFischer Scientific15353518
ParafilmAmcorPM-966
Photospectrometer (Biophotometer)Eppendorf16713
Pipettes and tipsGilson#####
Precision BalanceSartorius16384738
Qubit 2.0 FluorometerThermo Fisher ScientificQ32866
Shaking IncubatorThermo Fisher ScientificSHKE8000
Sonic Dismembrator (Sonicator)Thermo Fisher Scientific12893543
Static IncubatorSanyoMIR-162
Syringe and needlesThermo Fisher Scientific66490
Thermo max Q8000 (Shaking Incubator)Thermo Fisher ScientificSHKE8000
Varioskan Lux platereaderThermo Fisher ScientificVLBL00GD1
Vortex Genie 2Cole-parmerOU-04724-05
VWR PHenomenal pH 1100 L, ph/mv/°c meterVWR662-1657

  1. Lu, Y. Cell-free synthetic biology: Engineering in an open world. Synthetic and System Biotechnology. 2 (1), 23-27 (2017).
  2. Perez, J. G., Stark, J. C., Jewett, M. C. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harbor Perspectives in Biology. 8 (12), e023853 (2016).
  3. Jiang, L., Zhao, J., Lian, J., Xu, Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synthetic and System Biotechnology. 3 (2), 90-96 (2018).
  4. Kopniczky, M. B., et al. Cell-free protein synthesis as a prototyping platform for mammalian synthetic biology. ACS Synthetic Biology. 9 (1), 144-156 (2020).
  5. Pandi, A., Grigoras, I., Borkowski, O., Faulon, J. L. Optimizing cell-free biosensors to monitor enzymatic production. ACS Synthetic Biology. 8 (8), 1952-1957 (2019).
  6. Khambhati, K., Bhattacharjee, G., Gohil, N., Braddick, D., Kulkarni, V. S. V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Frontiers in Bioengineering and Biotechnology. 7, 248 (2019).
  7. Focke, P. J., et al. Combining in vitro folding with cell free protein synthesis for membrane protein expression. Biochemistry. 55 (30), 4212-4219 (2016).
  8. Fogeron, M. L., Lecoq, L., Cole, L., Harbers, M., Böckmann, A. Easy synthesis of complex biomolecular assemblies: wheat germ cell-free protein expression in structural biology. Frontiers in Molecular Biosciences. 8, 63958 (2021).
  9. Bashir, S., et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 12 (11), 2702 (2020).
  10. Loo, S. L., Vásquez, L., Athanassiou, A., Fragouli, D. Polymeric hydrogels-A promising platform in enhancing water security for a sustainable future. Advanced Material Interfaces. 8 (24), 2100580 (2021).
  11. Whitfield, C. J., et al. Cell-free protein synthesis in hydrogel materials. Chemical Communications. 56 (52), 7108-7111 (2020).
  12. Yao, H., et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Materials Today Bio. 15, 100429 (2022).
  13. Musgrave, C. S. A., Fang, F. Contact lens materials: A materials science perspective. Materials. 12 (2), 261 (2019).
  14. Maher, A. J., Rana, A. G., Rawan, A. Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. Journal of Environmental Management. 239, 255-261 (2019).
  15. Vigata, M., Meinert, C., Hutmacher, D. W., Bock, N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics. 12 (12), 1188 (2020).
  16. Jacob, S., et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 3 (3), 357 (2021).
  17. Senapati, S., et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 3, 7 (2018).
  18. Chen, Y., et al. A biocompatible, stimuli-responsive, and injectable hydrogel with triple dynamic bonds. Molecules. 25 (13), 3050 (2020).
  19. Shi, Q., et al. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials. 11, 64 (2019).
  20. Fan, M., Tan, H. Biocompatible conjugation for biodegradable hydrogels as drug and cell scaffolds. Cogent Engineering. 7 (1), 1736407 (2020).
  21. Byun, J. Y., Lee, K. H., Lee, K. Y., Kim, M. G., Kim, D. M. In-gel expression and in situ immobilization of proteins for generation of three-dimensional protein arrays in a hydrogel matrix. Lab on a Chip. 13 (5), 886-891 (2013).
  22. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  23. Huang, A., et al. BiobitsTM explorer: A modular synthetic biology education kit. Science Advances. 4 (8), 5105 (2018).
  24. Jaramillo-Isaza, S., Alfonso-Rodriguez, C. A., Rios-Rojas, J. F., García-Guzmán, J. A. Dynamic mechanical analysis of agarose-based biopolymers with potential use in regenerative medicine. Materials Today Proceeding. 49, 16-22 (2022).
  25. Wang, B. X., Xu, W., Yang, Z., Wu, Y. An overview on recent progress of the hydrogels: from material resources, properties to functional applications. Macromolecular Rapid Communications. 43 (6), 2100785 (2022).
  26. Salati, M. A., et al. Agarose-based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers. 12 (5), 1150 (2020).
  27. Buddingh, B. C., Van Hest, J. C. M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity. Accounts of Chemical Research. 50 (4), 769-777 (2017).
  28. Kahn, J. S., et al. DNA microgels as a platform for cell-free protein expression and display. Biomacromolecules. 17 (6), 2019-2026 (2016).
  29. Yang, D., et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Scientific Reports. 3, 3165 (2013).
  30. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  31. Whitfield, C. J., et al. Cell-free genetic devices confer autonomic and adaptive properties to hydrogels. BioRxiv. , (2019).
  32. Feng, L., Jianpu, T., Jinhui, G. D., Luo, D. Y. Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science. 98, 101163 (2019).
  33. Howard, T., et al. Datasets for Whitfield et al. 2020 Chemical Communications. , (2020).
  34. Banks, A. M., et al. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Computational and Structural Biotechnology Journal. 20, 218-229 (2022).
  35. Sun, Z. Z., et al. Protocols for implementing an Escherichia coli-based TX-TL cell-free expression system for synthetic biology. Journal of Visualized Experiments. (79), e50762 (2013).
  36. Moore, S. J., et al. EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology. 5 (10), 1059-1069 (2016).
  37. Benítez-Mateos, A. I., et al. Micro compartmentalized cell-free protein synthesis in hydrogel µ-channels. ACS Synthetic Biology. 9 (11), 2971-2978 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved