JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Métodos para incorporar reacciones de síntesis de proteínas libres de células en hidrogeles a macroescala

Published: June 23rd, 2023

DOI:

10.3791/65500

1School of Natural and Environmental Sciences, Newcastle University, 2Department of Life Sciences, Imperial College London
* These authors contributed equally

Aquí, presentamos dos protocolos para incrustar reacciones de síntesis de proteínas libres de células en matrices de hidrogel a macroescala sin la necesidad de una fase líquida externa.

Las redes de genes sintéticos proporcionan una plataforma para que los científicos e ingenieros diseñen y construyan sistemas novedosos con funcionalidad codificada a nivel genético. Si bien el paradigma dominante para el despliegue de redes de genes se encuentra dentro de un chasis celular, las redes de genes sintéticos también pueden desplegarse en entornos libres de células. Entre las aplicaciones prometedoras de las redes de genes libres de células se encuentran los biosensores, ya que se ha demostrado que estos dispositivos se encuentran contra objetivos bióticos (virus del Ébola, Zika y SARS-CoV-2) y abióticos (metales pesados, sulfuros, pesticidas y otros contaminantes orgánicos). Los sistemas libres de células generalmente se implementan en forma líquida dentro de un recipiente de reacción. Sin embargo, ser capaz de incrustar tales reacciones en una matriz física puede facilitar su aplicación más amplia en un conjunto más amplio de entornos. Con este fin, se han desarrollado métodos para incorporar reacciones de síntesis de proteínas libres de células (CFPS) en una variedad de matrices de hidrogel. Una de las propiedades clave de los hidrogeles que conducen a este trabajo es la alta capacidad de reconstitución en agua de los materiales de hidrogel. Además, los hidrogeles poseen características físicas y químicas que son funcionalmente beneficiosas. Los hidrogeles se pueden liofilizar para su almacenamiento y rehidratarse para su uso posterior. Se presentan dos protocolos paso a paso para la inclusión y el ensayo de reacciones de CFPS en hidrogeles. En primer lugar, se puede incorporar un sistema CFPS a un hidrogel mediante rehidratación con un lisado celular. El sistema dentro del hidrogel puede ser inducido o expresado constitutivamente para una expresión completa de proteínas a través del hidrogel. En segundo lugar, el lisado celular se puede introducir en un hidrogel en el punto de polimerización, y todo el sistema se puede liofilizar y rehidratar en un punto posterior con una solución acuosa que contiene el inductor del sistema de expresión codificado dentro del hidrogel. Estos métodos tienen el potencial de permitir redes de genes libres de células que confieren capacidades sensoriales a los materiales de hidrogel, con el potencial de ser desplegados más allá del laboratorio.

La biología sintética integra diversas disciplinas de ingeniería para diseñar y diseñar piezas, dispositivos y sistemas de base biológica que puedan realizar funciones que no se encuentran en la naturaleza. La mayoría de los enfoques de biología sintética todavía están ligados a células vivas. Por el contrario, los sistemas de biología sintética libres de células facilitan niveles sin precedentes de control y libertad en el diseño, lo que permite una mayor flexibilidad y un tiempo más corto para la ingeniería de sistemas biológicos, al tiempo que elimina muchas de las limitaciones de los métodos tradicionales de expresión génica basados en célu....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Tampón de lisado celular y preparación de medios

  1. Preparación de 2x agar YT+P y medio
    1. Prepare 2 agar YT+P midiendo 16 g/L de triptona, 10 g/L de extracto de levadura, 5 g/L de NaCl, 40 mL/L 1 M K 2 HPO 4, 22 mL/L 1M KH2PO4 y 15 g/L de agar. Para el caldo 2x YT+P, siga la composición anterior pero omita el agar.
    2. Esterilice esterilizando en autoclave el 2x YT+P.
  2. Preparación del tampón S30A
    1. Preparar .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Este protocolo detalla dos métodos para incrustar reacciones de CFPS en matrices de hidrogel, con la Figura 1 presentando una descripción general esquemática de los dos enfoques. Ambos métodos son susceptibles de liofilización y almacenamiento a largo plazo. El método A es la metodología más utilizada por dos razones. En primer lugar, se ha demostrado que es el método más aplicable para trabajar con una variedad de materiales de hidrogel11. En segundo lugar.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A continuación se describen dos protocolos para la incorporación de reacciones de CFPS basadas en lisado de células de E. coli en hidrogeles de agarosa. Estos métodos permiten la expresión génica simultánea en todo el material. El protocolo se puede adaptar a otros sistemas de CFPS y se ha llevado a cabo con éxito con kits de CFPS disponibles en el mercado, además de los lisados celulares preparados en laboratorio que se detallan aquí. Es importante destacar que el protocolo permite la expresión géni.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Los autores agradecen enormemente el apoyo de los premios BB/V017551/1 (S.K., T.P.H.) y BB/W01095X/1 (A.L., T.P.H.), y del Consejo de Investigación de Ingeniería y Ciencias Físicas - Laboratorios de Ciencia y Tecnología de Defensa EP/N026683/1 (C.J.W., A.M.B., T.P.H.). Los datos que respaldan esta publicación están disponibles en abierto en: 10.25405/data.ncl.22232452. A los efectos del acceso abierto, el autor ha aplicado una licencia Creative Commons Attribution (CC BY) a cualquier versión del Manuscrito Aceptado por el Autor que surja.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Material
3-PGASanta Cruz Biotechnologysc-214793B
Acetic AcidSigma-AldrichA6283
AgarThermo Fisher ScientificA10752.22
AgaroseSevern Biotech30-15-50
Amino Acid Sampler KitVWRBTRABR1401801
ATPSigma-AldrichA8937-1G
cAMPSigma-AldrichA9501-1G
Coenzyme A (CoA)Sigma-AldrichC4282-100MG
CTPAlfa AesarJ14121.MC
DTTThermo Fisher ScientificR0862
Folinic AcidSigma-AldrichF7878-100MG
GTPCarbosynthNG01208
HEPESSigma-AldrichH4034-25G
K-glutamateSigma-AldrichG1149-100G
LysozymeSigma-AldrichL6876-1G
Mg-glutamateSigma-Aldrich49605-250G
NADSigma-AldrichN6522-250MG
PEG-8000PromegaV3011
Potassium Hydroxide (KOH)Sigma-Aldrich757551-5G
Potassium Phosphate Dibasic (K2HPO4)Sigma-AldrichP3786-500G
Potassium Phosphate Monobasic (KH2PO4)Sigma-AldrichRDD037-500G
Protease Inhibitor cocktailSigma-AldrichP2714-1BTL
Qubit Protein concentration kitThermo Fisher ScientificA50668
Rossetta 2 DE 3 E.coliSigma-Aldrich71397-3
Sodium Chloride (NaCl)Sigma-AldrichS9888-500G
SpermidineSigma-Aldrich85558-1G
TryptoneThermo Fisher Scientific211705
TrisSigma-AldrichGE17-1321-01
tRNASigma-Aldrich10109541001
UTPAlfa AesarJ23160.MC
Yeast ExtractSigma-AldrichY1625-1KG
Equipment
1.5 mL microcentrifuge tubesSigma-AldrichHS4323-500EA
10K MWCO dialysis cassettesThermo Fisher Scientific66381
15 mL centrifuge tubeSarstedt62.554.502
50 mL centrifuge bottlesSarstedt62.547.254
500 mL centrifuge bottlesThermo Fisher Scientific3120-9500
Alpha 1-2 LD Plus freeze-dryerChristpart no. 101521, 101522, 101527
Benchtop CentrifugeThermo Fisher ScientificH-X3R
Black 384 well microtitre platesFischer Scientific66
CuvettesThermo Fisher Scientific222S
Elga Purelab ChorusElga#####
Eppendorf Microcentrifuge 5425REppendorfEP00532
High Speed CentrifugeBeckman CoulterB34183
JMP licenseSAS Institute15
Magnetic StirrerFischer Scientific15353518
ParafilmAmcorPM-966
Photospectrometer (Biophotometer)Eppendorf16713
Pipettes and tipsGilson#####
Precision BalanceSartorius16384738
Qubit 2.0 FluorometerThermo Fisher ScientificQ32866
Shaking IncubatorThermo Fisher ScientificSHKE8000
Sonic Dismembrator (Sonicator)Thermo Fisher Scientific12893543
Static IncubatorSanyoMIR-162
Syringe and needlesThermo Fisher Scientific66490
Thermo max Q8000 (Shaking Incubator)Thermo Fisher ScientificSHKE8000
Varioskan Lux platereaderThermo Fisher ScientificVLBL00GD1
Vortex Genie 2Cole-parmerOU-04724-05
VWR PHenomenal pH 1100 L, ph/mv/°c meterVWR662-1657

  1. Lu, Y. Cell-free synthetic biology: Engineering in an open world. Synthetic and System Biotechnology. 2 (1), 23-27 (2017).
  2. Perez, J. G., Stark, J. C., Jewett, M. C. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harbor Perspectives in Biology. 8 (12), e023853 (2016).
  3. Jiang, L., Zhao, J., Lian, J., Xu, Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synthetic and System Biotechnology. 3 (2), 90-96 (2018).
  4. Kopniczky, M. B., et al. Cell-free protein synthesis as a prototyping platform for mammalian synthetic biology. ACS Synthetic Biology. 9 (1), 144-156 (2020).
  5. Pandi, A., Grigoras, I., Borkowski, O., Faulon, J. L. Optimizing cell-free biosensors to monitor enzymatic production. ACS Synthetic Biology. 8 (8), 1952-1957 (2019).
  6. Khambhati, K., Bhattacharjee, G., Gohil, N., Braddick, D., Kulkarni, V. S. V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Frontiers in Bioengineering and Biotechnology. 7, 248 (2019).
  7. Focke, P. J., et al. Combining in vitro folding with cell free protein synthesis for membrane protein expression. Biochemistry. 55 (30), 4212-4219 (2016).
  8. Fogeron, M. L., Lecoq, L., Cole, L., Harbers, M., Böckmann, A. Easy synthesis of complex biomolecular assemblies: wheat germ cell-free protein expression in structural biology. Frontiers in Molecular Biosciences. 8, 63958 (2021).
  9. Bashir, S., et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 12 (11), 2702 (2020).
  10. Loo, S. L., Vásquez, L., Athanassiou, A., Fragouli, D. Polymeric hydrogels-A promising platform in enhancing water security for a sustainable future. Advanced Material Interfaces. 8 (24), 2100580 (2021).
  11. Whitfield, C. J., et al. Cell-free protein synthesis in hydrogel materials. Chemical Communications. 56 (52), 7108-7111 (2020).
  12. Yao, H., et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Materials Today Bio. 15, 100429 (2022).
  13. Musgrave, C. S. A., Fang, F. Contact lens materials: A materials science perspective. Materials. 12 (2), 261 (2019).
  14. Maher, A. J., Rana, A. G., Rawan, A. Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. Journal of Environmental Management. 239, 255-261 (2019).
  15. Vigata, M., Meinert, C., Hutmacher, D. W., Bock, N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics. 12 (12), 1188 (2020).
  16. Jacob, S., et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 3 (3), 357 (2021).
  17. Senapati, S., et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 3, 7 (2018).
  18. Chen, Y., et al. A biocompatible, stimuli-responsive, and injectable hydrogel with triple dynamic bonds. Molecules. 25 (13), 3050 (2020).
  19. Shi, Q., et al. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials. 11, 64 (2019).
  20. Fan, M., Tan, H. Biocompatible conjugation for biodegradable hydrogels as drug and cell scaffolds. Cogent Engineering. 7 (1), 1736407 (2020).
  21. Byun, J. Y., Lee, K. H., Lee, K. Y., Kim, M. G., Kim, D. M. In-gel expression and in situ immobilization of proteins for generation of three-dimensional protein arrays in a hydrogel matrix. Lab on a Chip. 13 (5), 886-891 (2013).
  22. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  23. Huang, A., et al. BiobitsTM explorer: A modular synthetic biology education kit. Science Advances. 4 (8), 5105 (2018).
  24. Jaramillo-Isaza, S., Alfonso-Rodriguez, C. A., Rios-Rojas, J. F., García-Guzmán, J. A. Dynamic mechanical analysis of agarose-based biopolymers with potential use in regenerative medicine. Materials Today Proceeding. 49, 16-22 (2022).
  25. Wang, B. X., Xu, W., Yang, Z., Wu, Y. An overview on recent progress of the hydrogels: from material resources, properties to functional applications. Macromolecular Rapid Communications. 43 (6), 2100785 (2022).
  26. Salati, M. A., et al. Agarose-based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers. 12 (5), 1150 (2020).
  27. Buddingh, B. C., Van Hest, J. C. M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity. Accounts of Chemical Research. 50 (4), 769-777 (2017).
  28. Kahn, J. S., et al. DNA microgels as a platform for cell-free protein expression and display. Biomacromolecules. 17 (6), 2019-2026 (2016).
  29. Yang, D., et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Scientific Reports. 3, 3165 (2013).
  30. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  31. Whitfield, C. J., et al. Cell-free genetic devices confer autonomic and adaptive properties to hydrogels. BioRxiv. , (2019).
  32. Feng, L., Jianpu, T., Jinhui, G. D., Luo, D. Y. Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science. 98, 101163 (2019).
  33. Howard, T., et al. Datasets for Whitfield et al. 2020 Chemical Communications. , (2020).
  34. Banks, A. M., et al. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Computational and Structural Biotechnology Journal. 20, 218-229 (2022).
  35. Sun, Z. Z., et al. Protocols for implementing an Escherichia coli-based TX-TL cell-free expression system for synthetic biology. Journal of Visualized Experiments. (79), e50762 (2013).
  36. Moore, S. J., et al. EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology. 5 (10), 1059-1069 (2016).
  37. Benítez-Mateos, A. I., et al. Micro compartmentalized cell-free protein synthesis in hydrogel µ-channels. ACS Synthetic Biology. 9 (11), 2971-2978 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved