JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Imágenes de calcio de dos fotones de la actividad del prosencéfalo en peces cebra adultos que se comportan

Published: July 28th, 2023

DOI:

10.3791/65526

1Institute of Molecular Biology, Academia Sinica, 2Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center
* These authors contributed equally

Aquí, presentamos un protocolo para realizar imágenes de calcio de dos fotones en el prosencéfalo dorsal de pez cebra adulto.

El pez cebra adulto (Danio rerio) exhibe un rico repertorio de comportamientos para estudiar las funciones cognitivas. También tienen un cerebro en miniatura que se puede utilizar para medir las actividades en todas las regiones del cerebro a través de métodos de imágenes ópticas. Sin embargo, los informes sobre el registro de la actividad cerebral en el pez cebra adulto han sido escasos. El presente estudio describe los procedimientos para realizar imágenes de calcio de dos fotones en el prosencéfalo dorsal del pez cebra adulto. Nos centramos en los pasos para evitar que los peces cebra adultos muevan la cabeza, lo que proporciona una estabilidad que permite la obtención de imágenes de escaneo láser de la actividad cerebral. Los animales con la cabeza sujeta pueden mover libremente las partes de su cuerpo y respirar sin ayudas. El procedimiento tiene como objetivo acortar el tiempo de la cirugía del reposacabezas, minimizar el movimiento del cerebro y maximizar el número de neuronas registradas. Aquí también se describe una configuración para presentar un entorno visual inmersivo durante las imágenes de calcio, que se puede utilizar para estudiar los correlatos neuronales subyacentes a los comportamientos desencadenados visualmente.

Las imágenes de fluorescencia de calcio con indicadores codificados genéticamente o colorantes sintéticos han sido un método poderoso para medir la actividad neuronal en animales que se comportan, incluidos primates no humanos, roedores, aves e insectos. La actividad de cientos de células, hasta aproximadamente 800 μm por debajo de la superficie del cerebro, puede medirse simultáneamente utilizando imágenes multifotónicas 2,3. La actividad de tipos celulares específicos también se puede medir mediante la expresión de indicadores de calcio en poblaciones neuronales definidas genéticament....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Todos los procedimientos con animales fueron aprobados y realizados de acuerdo con los lineamientos del Comité Institucional de Cuidado y Uso de Animales de Academia Sinica. Los detalles de las herramientas de investigación se pueden encontrar en la Tabla de Materiales.

1. Preparación de la cámara de registro

  1. Prepare un tanque semihexagonal, una placa base y una etapa de cabeza (Figura 1A; Legajos Complementa.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

El protocolo consta de dos partes: cirugía de reposacabezas e imágenes de calcio de dos fotones de las actividades neuronales en el prosencéfalo. El éxito de la cirugía se define por la supervivencia del animal y la estabilidad del reposacabezas. La tasa de supervivencia puede mejorarse en gran medida mediante la perfusión frecuente de una solución de TMS al 0,01% a través de la boca durante la cirugía. Los peces deben recuperarse de la anestesia y respirar activamente dentro de 1-2 minutos después de sumergirs.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Aquí, describimos un protocolo detallado para sujetar la cabeza de un pez cebra adulto para obtener imágenes de calcio de dos fotones. Hay dos pasos críticos para lograr un reposacabezas que sea lo suficientemente estable para las imágenes de escaneo láser. Primero, la barra de la cabeza debe pegarse a los sitios de fijación específicos de los cráneos. Otras partes del cráneo suelen ser demasiado delgadas para proporcionar estabilidad mecánica e incluso pueden fracturarse durante los movimientos fuertes del cue.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Este trabajo contó con el apoyo del Instituto de Biología Molecular, la Academia Sinica y el Consejo Nacional de Ciencia y Tecnología de Taiwán. El Taller de Máquinas del Instituto de Física de la Academia Sinica ayudó a fabricar piezas diseñadas a medida. También queremos agradecer a P. Argast (Instituto Friedrich Miescher de Investigación Biomédica, Basilea, Suiza) por el diseño del mecanismo de bloqueo rápido de la platina de la cabeza.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Acquisition cardMBF BioscienceVidrio vDAQMicroscope
Back-projection filmKimotoDiland screen - GSKpresent visual stimulus
Band-pass filter (510/80 nm)ChromaET510/80mMicroscope
Base plate for the semi-hexagonal tankcustom madesee supplemental filesrecording chamber
Camera filter (<875 nm)Edmund optics#86-106Behavior recording
Camera filter (>700 nm)Edmund optics#43-949Behavior recording
Camera lensThorlabsMVL50M23Behavior recording
Chameleon Vision-SCoherentVision-SLaser
Circular plate for the head stagecustom madesee supplemental filesrecording chamber
Controller for piezo actuatorPhysik Instrumente E-665. CRMicroscope
Current amplifierThorlabsTIA60Microscope
Elitedent Q-6Rolence EnterpriseQ-6Surgery: UV lamp
Emission Filter 510/80 nmChromaET510/80mMicroscope
Head barcustom madesee supplemental filesrecording chamber
Infrared lightThorlabsM810L3Behavior recording
LED projectorAAXAP2B LED Pico Projectorpresent visual stimulus
Moist paper tissue (Kimwipe)Kimtech Science34155Surgery: moist paper tissue
Motorized XY sample stageZaberX-LRM050Microscope
Neutral Density Filters (50% Transmission)ThorlabsNE203Bpresent visual stimulus
Ø1/2" Post HolderThorLabsPH1.5VSurgery: hollow tube for cannon
Ø1/2" Stainless Steel Optical PostThorLabsTR150/MSurgery: fish loading module
Objective lens 16x, 0.8NANikonCF175Microscope
Oil-based modeling clayLy Hsin ClayC4086Surgery: head bar holder
Optical adhesiveNorland ProductsNOA68Surgery: UV curable glue
Photomultiplier tubeHamamatsuH11706P-40Microscope
Piezo actuatorPhysik Instrumente P-725.4CA PIFOCMicroscope
Pockels CellConopticsM350-80-LA-BK-02Microscope
Red Wratten filter (> 600 nm)Edmund optics#53-699present visual stimulus
Resonant-Galvo Scan SystemINSSRGE-02Microscope
Right-Angle Clamp for Ø1/2" PostThorLabsRA90/MSurgery: fish loading module
Rotating Clamp for Ø1/2" PostThorLabsSWC/MSurgery: fish loading module
ScanImageMBF BioscienceBasic versionMicroscope
Semi-hexagonal tankcustom madesee supplemental filesrecording chamber
Super-Bond C&B KitSun Medical Co.Super-Bond C&BSurgery: dental cement
Tricaine methanesulfonateSigma AldrichE10521Surgery: anesthetic
USB CameraFLIRBFS-U3-13Y3M-CBehavior recording
Vetbond3M1469SBSurgery: tissue glue

  1. Grienberger, C., Konnerth, A. Imaging calcium in neurons. Neuron. 73 (5), 862-885 (2012).
  2. Chow, D. M., et al. Deep three-photon imaging of the brain in intact adult zebrafish. Nature Methods. 17 (6), 605-608 (2020).
  3. Mittmann, W., et al. Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nature Neuroscience. 14 (8), 1089-1093 (2011).
  4. Friedrich, R. W., Jacobson, G. A., Zhu, P. Circuit neuroscience in zebrafish. Current Biology. 20 (8), R371-R381 (2010).
  5. Kappel, J. M., et al. Visual recognition of social signals by a tectothalamic neural circuit. Nature. 608 (7921), 146-152 (2022).
  6. Bartoszek, E. M., et al. Ongoing habenular activity is driven by forebrain networks and modulated by olfactory stimuli. Current Biology. 31 (17), 3861-3874 (2021).
  7. Valente, A., Huang, K. H., Portugues, R., Engert, F. Ontogeny of classical and operant learning behaviors in zebrafish. Learning & Memory. 19 (4), 170-177 (2012).
  8. Buske, C., Gerlai, R. Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Developmental Psychobiology. 54 (1), 28-35 (2012).
  9. Huang, K. H., et al. A virtual reality system to analyze neural activity and behavior in adult zebrafish. Nature Methods. 17 (3), 343-351 (2020).
  10. Rupprecht, P., Prendergast, A., Wyart, C., Friedrich, R. W. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy. Biomedical Optics Express. 7 (5), 1656-1671 (2016).
  11. Papadopoulos, I. N., Jouhanneau, J. -. S., Poulet, J. F. A., Judkewitz, B. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nature Photonics. 11 (2), 116-123 (2017).
  12. Torigoe, M., et al. Zebrafish capable of generating future state prediction error show improved active avoidance behavior in virtual reality. Nature Communications. 12 (1), 5712 (2021).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved