JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Analgesic Effect of Tuina on Rat Models with Compression of the Dorsal Root Ganglion Pain

Published: July 14th, 2023

DOI:

10.3791/65535

1Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, 2Rehabilitation Medicine Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, 3Department of Tuina, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine
* These authors contributed equally

This article presents a manipulation for treating chronic compression of the dorsal root ganglion in rats using Tuina therapy, along with a method for evaluating its effectiveness based on pain behavior and histopathological results.

Neuropathic pain is a prevalent condition that affects 6.9%-10% of the population and results from nerve damage due to various etiologies, such as lumbar disc herniation, spinal canal stenosis, and intervertebral foramen stenosis. Although Tuina, a traditional Chinese manual therapy, has shown analgesic effects in clinical practice for the treatment of neuropathic pain, its underlying neurobiological mechanisms remain unclear. Animal models are essential for elucidating the basic principles of Tuina. In this study, we propose a standardized Tuina protocol for rats with compression of the dorsal root ganglion (DRG), which involves inducing DRG compression by inserting a stainless steel rod into the intervertebral foramen, performing Tuina manipulation with specific parameters of location, intensity, and frequency in a controlled environment, and assessing the behavioral and histopathological outcomes of Tuina treatment. This article also discusses the potential clinical implications and limitations of the study and suggests directions for future research on Tuina.

In clinical settings, it is common to observe neurological pathological pain caused by nerve root compression due to various reasons. The most typical form of this neuropathic pain is lumbar disc herniation (LDH), which is often persistent, recurrent, and difficult to cure. Approximately 9% of the global population is affected by LDH, leading to significant social and economic burdens1. The incidence of this type of neuropathic pain is increasing yearly, with a trend toward younger patients, due to changes in human production and lifestyle2. Despite the use of non-steroidal painkillers, patients' symptoms cannot be c....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was carried out at the Pain Lab of the Neurobiology Institute at Fudan University. The experiments were approved and strictly adhered to the guidelines for the protection of laboratory animals established by the International Association for the Study of Pain (LASP) for all surgical procedures and animal handling. Clean-grade Sprague-Dawley (SD) rats, consisting of 32 males between 40-50 days old, with an average weight of 220 ± 1.38 g, were used for the present study. These rats were obtained from the Exp.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tuina therapy can help decrease rats' mechanical and thermal stimulation thresholds caused by CCD modeling
After 17 days of Tuina therapy, a significant difference was observed in PWT thresholds between the CCD rats receiving Tuina therapy and the untreated CCD group (P = 0.021, <0.05) (Figure 6 and Table 1).

The rats in the CCD group receiving Tuina therapy showed improvement in pain threshold from the begi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Our research group has conducted relevant studies on the parameters of Tuina manipulation in early stage. First, it is important to set the force intensity for Tuina manipulation. In clinical Tuina, practitioners adjust the force intensity according to their experience and patients' subjective feelings, achieving the best Tuina effect through communication. However, this is not feasible in animal experiments. In animal experiments, a "response threshold" is used to define the intensity of Tuina manipulation. .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by ShanghaiCritical Clinical Specialties ConstructionProject(Grant Number: Shslczdzk04001); the Sailing program of Shanghai Science andTechnology Commission (Grant Number:22YF1444300); Projects within the budget ofShanghai University of Traditional ChineseMedicine(Grant Number: 2021LK091).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
"L" stainless steel rod (4 mm long and 0.4 mm in diameter) hand-made / For CCD models making
ALMEMO admeasuring apparatus ahlborn 2450-1 Mechanical Withdrawal Threshold test
Constant temperature slicer CM-1900 Leica 1491950C1US For specimen production
Disinfectant (iodine) 100 mL/bottle LIRCON/Shandong Lilkang / For disinfection
Disposable sterile syringe 5 mL Shanghai Misha Wa Medical Industry / For injection
Electron microscope CX-31 Olympus, Japan BJ002318 For specimen observation
Finger pressure recordings Suzhou Changxian Optoelectronic Technology CX1003w For Tuina manipulation
Foam board (35 cm x 20 cm) hand-made / It is our homemade apparatus for fixing rats
MERSILK W2512 Johnson & Johnson / For tissue suture
Neutral balsam Sinopharm Chemical Reagent 10004160 For specimen production
paraformaldehyde China National Chemical Reagent / For specimen production
Pentobarbital sodium Sigma-Aldrich P3761 For anesthesia of rat
Plantar Test Apparatus (Hargreaves Method) for Mice and Rats IITC Life Science / Paw Withdrawal Latency
Precision electronic scale for experiment JY3002 Shanghai Precision Scientific Instrument / Weighing of rat
Rat hair clipper Philips HP6341/00 Shaving of rat fur
Restrainer for rats Tongji University (self-made) / It is a homemade apparatus made by Tongji University, which can effectively immobilize the rats and fully expose their hind limbs.
Tissue-Tek O.C.T. Compound SAKURA 4583 For specimen production
Uratan China National Chemical Reagent / For anesthesia of rat
X-ray detector XR-600 Dongguan Kaso Electronic Technology / Examination of CCD models
xylene Shanghai Sinopharm Group 100092 For specimen production

  1. Vos, T., et al. national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 390 (10100), 1211-1259 (2017).
  2. Amin, R. M., Andrade, N. S., Neuman, B. J. Lumbar Disc Herniation. Current Reviews in Musculoskeletal Medicine. 10 (4), 507-516 (2017).
  3. Stochkendahl, M. J., et al. National Clinical Guidelines for non-surgical treatment of patients with recent onset low back pain or lumbar radiculopathy. European Spine Journal. 27 (1), 60-75 (2018).
  4. Bostelmann, R., Steiger, H. J. Comment on &#34;An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy&#34. The Spine Journal. 14 (9), 2273 (2014).
  5. Tang, J., et al. Effect of bone-setting massage combined with acupuncture and moxibustion on simple lumbar disc herniation and its effect on pain and sensory disorder of lower limbs. Chinese Archives of Traditional Chinese Medicine. 38 (10), 244-247 (2020).
  6. Lin, X. -. Y., Yang, J., Li, H. -. M., Hu, S. -. J., Xing, J. -. L. Dorsal root ganglion compression as an animal model of sciatica and low back pain. Neuroscience Bulletin. 28 (5), 618-630 (2012).
  7. Shi, C., et al. Animal models for studying the etiology and treatment of low back pain. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society. 36 (5), 1305-1312 (2018).
  8. Zhao, X. -. y., et al. Effect of Tuina on the expression of TNF-α,IL-6,TGF-β1 and CTGF in the degenerative tissue of rabbits′lumbar intervertebral disc. Journal of Chengdu Medical College. 14 (6), 741-745 (2019).
  9. Zhang, L., Li, Z. -. y., Yu, Z. -. y., Yue, X. -. y., Fu, R. -. y. Effect of GABA and GABAAR in analgesic loop of CCI rats by pressing manipulation based on &#34;Taking Tenderness as Acupoints&#34; theory. Journal of Shanghai University of Traditional Chinese Medicine. 28 (3), 50-53 (2014).
  10. Long, B. -. c. a. l., et al. Analgesic effect of massage on rats with neuropathic pain and its mechanism. Guangxi Medical Journal. 44 (17), 2003-2009 (2022).
  11. Al-Bedah, A., Ali, G., Aboushanab, T., Qureshi, N. Tui Na (or Tuina) massage: A minireview of pertinent literature, 1970-2017. Journal of Complementary and Alternative Medical Research. 3, 1-14 (2017).
  12. Au, D. W. H., et al. Effects of acupressure on anxiety: a systematic review and meta-analysis. Acupuncture in Medicine: Journal of the British Medical Acupuncture Society. 33 (5), 353-359 (2015).
  13. Hsiung, W. -. T., Chang, Y. -. C., Yeh, M. -. L., Chang, Y. -. H. Acupressure improves the postoperative comfort of gastric cancer patients: A randomised controlled trial. Complementary Therapies in Medicine. 23 (3), 339-346 (2015).
  14. Wu, S., et al. Neural interconnection between acupoint &#34;Chéngshān (BL57)&#34; and sciatic nerve in the rat. World Journal of Acupuncture - Moxibustion. 31 (2), 129-135 (2021).
  15. Banik, R. K., Kabadi, R. A. A modified Hargreaves method for assessing threshold temperatures for heat nociception. Journal of neuroscience methods. 219 (1), 41-51 (2013).
  16. Cheah, M., Fawcett, J. W., Andrews, M. R. Assessment of Thermal pain sensation in rats and mice using the hargreaves test. Bio-protocol. 7 (16), e2506 (2017).
  17. Randall, L. O., Selitto, J. J. A method for measurement of analgesic activity on inflamed tissue. Archives Internationales De Pharmacodynamie Et De Therapie. 111 (4), 409-419 (1957).
  18. Yan, J. -. t. . Science of Tuina. , (2003).
  19. Himes, B. T., Tessler, A. Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats. The Journal of Comparative Neurology. 284 (2), 215-230 (1989).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved