JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Targeted Knockdown of Genes in the Choroid Plexus

Published: June 16th, 2023



1State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 2Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, 3Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, 4Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University
* These authors contributed equally

Here, we describe a method to selectively alter gene expressions in the choroid plexus while avoiding any impact in other brain areas.

The choroid plexus (ChP) serves as a critical gateway for immune cell infiltration into the central nervous system (CNS) under both physiological and pathological conditions. Recent research has shown that regulating ChP activity may offer protection against CNS disorders. However, studying the biological function of the ChP without affecting other brain regions is challenging due to its delicate structure. This study presents a novel method for gene knockdown in ChP tissue using adeno-associated viruses (AAVs) or cyclization recombination enzyme (Cre) recombinase protein consisting of TAT sequence (CRE-TAT). The results demonstrate that after injecting AAV or CRE-TAT into the lateral ventricle, the fluorescence was exclusively concentrated in the ChP. Using this approach, the study successfully knocked down the adenosine A2A receptor (A2AR) in the ChP using RNA interference (RNAi) or Cre/locus of X-overP1 (Cre/LoxP) systems, and showed that this knockdown could alleviate the pathology of experimental autoimmune encephalomyelitis (EAE). This technique may have important implications for future research on the ChP's role in CNS disorders.

The choroid plexus (ChP) was often thought to help maintain brain functional homeostasis by secreting cerebrospinal fluid (CSF) and brain-derived neurotrophic factor (BDNF)1,2. Increasing research over the last three decades has revealed that the ChP represents a distinct pathway for immune cell infiltration into the central nervous system (CNS).

The tight junctions (TJs) of the ChP, composed of a monolayer ChP epithelium, maintain immunological homeostasis by preventing macromolecules and immune cells from entering the brain3. However, under certain patholog....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal procedures described in this study were conducted in accordance with the guidelines outlined in the NIH Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee at Wenzhou Medical University.

1. Animals

  1. Purchase male C57BL/6 mice aged 8-12 weeks and weighing 20-22 g.
  2. Obtain the transgenic Rosa-LSL (Lox-StoP-Lox)-tdTomato (Ai9) mouse line, and male A2ARflox/flox mice.<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

ChP-specific A2AR knockdown by ICV injection of AAV2/5-shRNA or CRE-TAT
The role of A2AR in the ChP as a powerful regulator of neural information in EAE pathogenesis remains unclear. Knocking down ChP-specific A2AR expression could shed light on the A2AR regulatory effects on the central immune system in EAE and other nervous system inflammations. This study used ICV injection of CRE-TAT to decrease A2AR expression in the ChP of A2AR.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The research presented two distinct approaches for the targeted knockdown of ChP genes. The first approach involved the ICV injection of CRE-TAT, which contains Cre recombinase, into A2ARflox/flox mice. The second approach entailed ICV injection of AAV2/5 carrying shRNA of A2AR. By utilizing these two strategies, the work achieved the selective knockdown of A2AR within the ChP and was able to demonstrate the protective effects of inhibiting A2AR signaling in the ChP .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We gratefully acknowledge the support of the National Natural Science Foundation of China (Grant No. 31800903, awarded to W. Zheng) and the Wenzhou Science and Technology Project (no. Y2020426, awarded to Y. Y. Weng) for this work.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
A2ARflox/flox mice State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University
AAV2/5-A2AR-ShRNA virus Shanghai Heyuan Biotechnology Co. LTD pt-4828
antifade mounting medium Beyotime Biotechnology 0100-01
borosilicate glass capillary Beijing Meiyaxian Technology Co. Ltd B100-50-10
brain stereotaxic apparatus RWD, Shenzhen 69100
C57BL/6 mice Beijing Vital Charles River Laboratory Animal Technology Company
CRE-TAT recombinase Millipore SCR508
DAPI Absin B25A031
frozen slicing machine Leica CM1950
H37Ra Becton Dickinson and company 231141
Hamilton syringe Hamilton, American P/N: 86259
Incomplete Freunds adjuvant Sigma F5506
Laser confocal microscope Zeiss LSM900
MOG35-55 Suzhou Qiangyao Biotechnology Co., LTD 4010006243
OCT glue Epredia 6502p
paraformaldehyde Chengdu Kelong Chemical Reagent Company 30525-89-4
pentobarbital sodium Boyun Biotech PC13003
Pipette gun Eppendorf N45014F
PrimeScript 1st Strand cDNA Synthesis Kit Takara  6110A
Real- Time PCR System BioRad CFX96
Rosa-LSL (Lox-StoP-Lox)-tdTomato mice Jackson Laboratory
sucrose Sangon Biotech A502792-0500
super high speed homogenizer IKA 3737025
Trizol Invitrogen 15596026
xylene solution Chengdu Kelong Chemical Reagent Company 1330-20-7

  1. Damkier, H. H., Brown, P. D., Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiological Reviews. 93 (4), 1847-1892 (2013).
  2. Lun, M. P., Monuki, E. S., Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nature Reviews: Neuroscience. 16 (8), 445-457 (2015).
  3. Wolburg, H., Paulus, W. Choroid plexus: biology and pathology. Acta Neuropathologica. 119 (1), 75-88 (2010).
  4. Solar, P., Zamani, A., Kubickova, L., Dubovy, P., Joukal, M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 17 (1), 35 (2020).
  5. Marques, F., et al. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiology of Disease. 107, 32-40 (2017).
  6. Myung, J., et al. The choroid plexus is an important circadian clock component. Nature Communications. 9 (1), 1062 (2018).
  7. Zhang, Y., et al. A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells. American Journal of Respiratory Cell and Molecular Biology. 36 (5), 515-519 (2007).
  8. Johansson, P. A., et al. The transcription factor Otx2 regulates choroid plexus development and function. Development. 140 (5), 1055-1066 (2013).
  9. Xu, H., et al. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nature Communications. 12 (1), 447 (2021).
  10. Spatazza, J., et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Reports. 3 (6), 1815-1823 (2013).
  11. Zheng, W., et al. Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis. Journal of Neuroinflammation. 19 (1), 52 (2022).
  12. Steffensen, A. B., et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nature Communications. 9 (1), 2167 (2018).
  13. Zhu, L., et al. Klotho controls the brain-immune system interface in the choroid plexus. Proceedings of the National Academy of Sciences. 115 (48), E11388-E11396 (2018).
  14. Chen, X., et al. Different serotypes of adeno-associated virus vector- and lentivirus-mediated tropism in choroid plexus by intracerebroventricular delivery. Human Gene Therapy. 31 (7-8), 440-447 (2020).
  15. Konsman, J. P. The mouse brain in stereotaxic coordinates. Psychoneuroendocrinology. 6 (28), 827-828 (2003).
  16. Weaver, A., et al. An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J. 19 (12), 1668-1670 (2005).
  17. Kertser, A., et al. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. Science Advances. 5 (5), 4111 (2019).
  18. Kaiser, K., et al. MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Development. 148 (10), (2021).
  19. Compston, A., Coles, A. Multiple sclerosis. Lancet. 372 (9648), 1502-1517 (2008).
  20. Reboldi, A., et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nature Immunology. 10 (5), 514-523 (2009).
  21. Jovanova-Nesic, K., et al. Choroid plexus connexin 43 expression and gap junction flexibility are associated with clinical features of acute EAE. Annals of the New York Academy of Sciences. 1173, 75-82 (2009).
  22. Jovanova-Nesic, K., Jovicic, S., Sovilj, M., Spector, N. H. Magnetic brain stimulation upregulates adhesion and prevents Eae: MMP-2, ICAM-1, and VCAM-1 in the choroid plexus as a target. International Journal of Neuroscience. 119 (9), 1399-1418 (2009).
  23. Mills, J. H., Alabanza, L. M., Mahamed, D. A., Bynoe, M. S. Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis. Journal of Neuroinflammation. 9, 193 (2012).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved