JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Design and Construction of an Experimental Setup to Enhance Mineral Weathering through the Activity of Soil Organisms

Published: November 10th, 2023

DOI:

10.3791/65563

1Soil Biology Group, Wageningen University & Research, 2Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 3Department of Earth Sciences, Uppsala University, 4Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, 5Tupola, Wageningen University & Research, 6IDLab - Department of Computer Science, University of Antwerp - imec, 7Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, 8Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, 9Department of Mathematics, University of Antwerp - imec

Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored.

This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.

Tags

Keywords Enhanced Weathering

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved