A subscription to JoVE is required to view this content. Sign in or start your free trial.
This paper describes how polarization-sensitive two-photon microscopy could be applied to characterize the local organization within label-free amyloid superstructures-spherulites. It also describes how to prepare and measure the sample, assemble the required setup, and analyze the data to obtain information about the local organization of amyloid fibrils.
Compared to its one-photon counterpart, two-photon excitation is beneficial for bioimaging experiments because of its lower phototoxicity, deeper tissue penetration, efficient operation in densely packed systems, and reduced angular photoselection of fluorophores. Thus, the introduction of polarization analysis in two-photon fluorescence microscopy (2PFM) provides a more precise determination of molecular organization in a sample compared to standard imaging methods based on linear optical processes. In this work, we focus on polarization-sensitive 2PFM (ps-2PFM) and its application in the determination of molecular ordering within complex bio-structures-amyloid spherulites. Neurodegenerative diseases such as Alzheimer's or Parkinson's are often diagnosed through the detection of amyloids-protein aggregates formed due to an impaired protein misfolding process. Exploring their structure leads to a better understanding of their creation pathway and consequently, to developing more sensitive diagnostic methods. This paper presents the ps-2PFM adapted for the determination of local fibril ordering inside the bovine insulin spherulites and spherical amyloidogenic protein aggregates. Moreover, we prove that the proposed technique can resolve the three-dimensional organization of fibrils inside the spherulite.
Over the past decades, although there has been significant development of numerous fluorescence microscopy techniques for bioimaging of proteins and their aggregates1, only a few have been used to resolve their local ordering within the sample2,3. Fluorescence lifetime imaging microscopy4 was used to study the intrinsic structural heterogeneity of amyloid superstructures-spherulites. Moreover, quantitative determination of the local ordering inside complex and densely-packed biostructures such as spherulites could be resolved using polarization-sensitive methods<....
1. Preparing the microscope slides with fully-grown spherulites
NOTE: See the Table of Materials for details about all materials, reagents, and equipment used in this protocol. All solutions were prepared with deionized water (18.2 MΩ·cm at 25 °C) obtained from the water purification system.
The presented protocol provides step-by-step guidance through the preparation of amyloid superstructures for testing with ps-2PFM, construction of the microscopic system, and measurements of the proper sample. However, before the final set of measurements, it is vital to properly align the APDs with an isotropic reference, which should result in collecting a symmetrical signal of similar shape and intensity on both detectors (Figure 4C). Even minimal differences between the intensities measu.......
Polarization-sensitive two-photon microscopy is a valuable tool for studying the local ordering of fibrils inside the amyloid superstructures, requiring only small modifications of the standard multiphoton setup. Since it operates on nonlinear optical phenomena, reduced angular photo-selection and enhanced axial resolution can be achieved compared to one-photon excited fluorescence microscopy methods. In addition, it leads to lower light scattering, lower phototoxicity, and deeper sample penetration when compared to the .......
The authors have no conflicts of interest to disclose.
This work was supported by Sonata Bis 9 project (2019/34/E/ST5/00276) financed by National Science Centre in Poland.
....Name | Company | Catalog Number | Comments |
Sample preparation | |||
Coverslips, 24 x 24 mm | Chemland | 04-298.202.04 | |
DPX mountant for histology | Sigma-Aldrich | 6522 | Slide mountant |
Eppendorf Safe-Lock tubes, 1.5 mL, polypropylene | Chemland | 02-63102 | |
Eppendorf ThermoMixer C | Eppendorf | Used for spherulite incubation | |
HLP 5UV Water purification system | Hydrolab | Source of dionized water used in sample preparation | |
Hydrochloric acid (≥37%, APHA ≤10), | Sigma-Aldrich | 30721-M | |
Insulin powder from the bovine pancreas (≥25 units/mg (HPLC)) | Sigma-Aldrich | I5500 | |
Methanol (HPLC grade) | Sigma-Aldrich | 270474 | |
Microscope slides with a concave, 76 x 26 x 1 mm | Chemland | 04-296.202.09 | |
Olympus BX60 | Olympus | Polarized Optical Microscope used in Figure 2 | |
PTFE thread seal tape, 12 mm x 12 mm x 0.1 mm, 60 gm2 | Chemland | VIT131097 | |
Microscope ps-2PFM setup | |||
Chameleon Ultra II | Coherent | ||
FELH0800 - Ø25.0 mm Longpass Filter | Thorlabs | ||
FESH0700 - Ø25.0 mm Shortpass Filter | Thorlabs | ||
IDQ100 photon-counting avalanche photodiodes | ID Quantique | ||
Multiphoton short-pass emission filter 720 nm | Semrock | ||
Mounted Achromatic Half-Wave Plate, 690-1200 nm | Thorlabs | ||
Nikon Plan Apo Oil Immersion 100x/1.4 NA | Nikon | ||
piezo 3D stage | Piezosystem Jena | ||
Polarizing Beamsplitter | Thorlabs | ||
S130C - Slim Photodiode Power Sensor, Si, 400 - 1100 nm, 500 mW | Thorlabs | ||
Software | |||
LabView 2018 | National Instruments | Version 18.0.1f2 | |
Matplotlib library | Version 3.3.2 | ||
NumPy library | Version 1.19.2 | ||
SciPy library | Version 1.5.2 | ||
Spyder Python 3 IDE | Version 4.1.5 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved