JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Single-Cell Sorting of Immunophenotyped Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth

Published: November 10th, 2023

DOI:

10.3791/65723

1Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 2HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
* These authors contributed equally

The mesenchymal stem cells (MSCs) of an organism possess an extraordinary capacity to differentiate into multiple lineages of adult cells in the body and are known for their immunomodulatory and anti-inflammatory properties. The use of these stem cells is a boon to the field of regenerative biology, but at the same time, a bane to regenerative medicine and therapeutics owing to the multiple cellular ambiguities associated with them. These ambiguities may arise from the diversity in the source of these stem cells and from their in vitro growth conditions, both of which reflect upon their functional heterogeneity.

This warrants methodologies to provide purified, homogeneous populations of MSCs for therapeutic applications. Advances in the field of flow cytometry have enabled the detection of single-cell populations using a multiparametric approach. This protocol outlines a way to identify and purify stem cells from human exfoliated deciduous teeth (SHEDs) through fluorescence-assisted single-cell sorting. Simultaneous expression of surface markers, namely, CD90-fluorescein isothiocyanate (FITC), CD73-peridinin-chlorophyll-protein (PerCP-Cy5.5), CD105-allophycocyanin (APC), and CD44-V450, identified the "bright," positive-expressors of MSCs using multiparametric flow cytometry. However, a significant drop was observed in percentages of quadruple expressors of these positive markers from passage 7 onwards to the later passages.

The immunophenotyped subpopulations were sorted using the single-cell sort mode where only two positive and one negative marker constituted the inclusion criteria. This methodology ensured the cell viability of the sorted populations and maintained cell proliferation post sorting. The downstream application for such sorting can be used to evaluate lineage-specific differentiation for the gated subpopulations. This approach can be applied to other single-cell systems to improve isolation conditions and for acquiring multiple cell surface marker information.

Tags

Keywords Single cell Sorting

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved