JoVE Logo
Faculty Resource Center

Sign In

Abstract

Environment

Visualization of Productivity Zones Based on Nitrogen Mass Balance Model in Narragansett Bay, Rhode Island

Published: July 14th, 2023

DOI:

10.3791/65728

1School of Earth, Environmental and Marine Sciences, University of Texas - Rio Grande Valley, 2Graduate School of Oceanography, University of Rhode Island, 3Rhode Island School of Design, 4Department of Art, University of New Mexico

Primary productivity in the coastal regions, linked to eutrophication and hypoxia, provides a critical understanding of ecosystem function. Although primary productivity largely depends on riverine nutrient inputs, estimation of the extent of riverine nutrient influences in the coastal regions is challenging. A nitrogen mass balance model is a practical tool to evaluate coastal ocean productivity to understand biological mechanisms beyond data observations. This study visualizes the biological production zones in Narragansett Bay, Rhode Island, USA, where hypoxia frequently occurs, by applying a nitrogen mass balance model. The Bay is divided into three zones - brown, green, and blue zones - based on primary productivity, which are defined by the mass balance model results. Brown, green, and blue zones represent a high physical process, a high biological process, and a low biological process zone, depending on river flow, nutrient concentrations, and mixing rates. The results of this study can better inform nutrient management in the coastal ocean in response to hypoxia and eutrophication.

Tags

Keywords Nitrogen Mass Balance Model

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved