Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Questo articolo descrive una procedura per produrre iTenociti generando cellule stromali mesenchimali derivate da iPSC con sovraespressione combinata di Scleraxis utilizzando un vettore lentivirale e stretching uniassiale tramite un bioreattore 2D.

Abstract

Le sfide odierne nella riparazione dei tendini e dei legamenti richiedono l'identificazione di un candidato adatto ed efficace per la terapia cellulare per promuovere la rigenerazione del tendine. Le cellule stromali mesenchimali (MSC) sono state esplorate come potenziale strategia di ingegneria tissutale per la riparazione dei tendini. Sebbene siano multipotenti e abbiano un potenziale rigenerativo in vivo, sono limitati nella loro capacità di auto-rinnovamento e mostrano eterogeneità fenotipica. Le cellule staminali pluripotenti indotte (iPSC) possono aggirare queste limitazioni grazie alla loro elevata capacità di auto-rinnovamento e alla plasticità di sviluppo senza pari. Nello sviluppo dei tenociti, la sclerassi (Scx) è un regolatore molecolare diretto cruciale della differenziazione tendinea. Inoltre, è stato dimostrato che la meccanoregolazione è un elemento centrale che guida lo sviluppo e la guarigione del tendine embrionale. Per questo motivo, abbiamo sviluppato un protocollo per incapsulare l'effetto sinergico della stimolazione biologica e meccanica che può essere essenziale per la generazione di tenociti. Le iPSC sono state indotte a diventare cellule stromali mesenchimali (iMSC) e sono state caratterizzate con i classici marcatori delle cellule stromali mesenchimali tramite citometria a flusso. Successivamente, utilizzando un vettore lentivirale, le iMSC sono state trasdotte per sovraesprimere stabilmente SCX (iMSCSCX+). Queste cellule iMSCSCX+ possono essere ulteriormente maturate in iTenociti tramite carico di trazione uniassiale utilizzando un bioreattore 2D. Le cellule risultanti sono state caratterizzate dall'osservazione della sovraregolazione dei marcatori tendinei precoci e tardivi, nonché della deposizione di collagene. Questo metodo di generazione di iTenociti può essere utilizzato per aiutare i ricercatori a sviluppare una fonte di cellule allogeniche potenzialmente illimitata per applicazioni di terapia cellulare tendinea.

Introduction

Per affrontare i problemi contemporanei nella riparazione di tendini e legamenti, è necessario disporre di una cellula candidata pertinente adatta alle terapie cellulari. Una via di indagine nell'ingegneria tissutale per la riparazione dei tendini coinvolge l'esplorazione delle cellule stromali mesenchimali derivate dal midollo osseo (BM-MSC) e delle cellule stromali derivate dal tessuto adiposo (ASC) come potenziali strategie. Queste cellule hanno capacità multipotenti, grande abbondanza e potenziale rigenerativo in vivo. Inoltre, hanno mostrato una maggiore capacità di guarigione e migliori risultati funzionali nei modelli animali1. ....

Protocol

Questo protocollo per la produzione di iTenociti può essere condotto in tre fasi principali: da iPSC a iMSC (10 giorni), da iMSC a iMSCSCX+ (2 settimane), da iMSCSCX+ a iTenociti (minimo 4 giorni). Ogni fase principale del protocollo può essere messa in pausa e riavviata in un secondo momento, a seconda della tempistica sperimentale. Per i metodi coinvolti nella coltura delle cellule, devono essere impiegate tecniche sterili. Tutte le cellule di questo protocollo devono essere coltivate a 37 °C, .......

Representative Results

Differenziazione delle iPSC umane in iMSCs
Come descritto in precedenza, l'attuale protocollo per differenziare le iPSC in iMSC prevede la formazione di corpi embrioidi2. Questo processo richiede circa dieci giorni per indurre le iMSC dalle iPSC (Figura 1A). Tuttavia, si consiglia vivamente di passare gli iMSC appena generati almeno due volte. Questo non solo aiuta a eliminare la necessità di piastre rivestite di gelatina, ma stabilisce anche un'e.......

Discussion

In questo protocollo, gli itenociti sono generati attraverso tre fasi principali: (1) induzione di iPSC a iMSC, (2) sovraespressione di SCX utilizzando un vettore lentivirale e (3) maturazione delle cellule attraverso la tensione uniassiale 2D.

Il protocollo presentato per differenziare le iPSC in iMSC è stato precedentemente descritto dal nostro gruppo2. Da quella pubblicazione, sono stati sviluppati numerosi protocolli, tra cui un protocollo consolidato per l'utilizz.......

Acknowledgements

Questo studio è stato parzialmente supportato dal NIH/NIAMS K01AR071512 e dal CIRM DISC0-14350 a Dmitriy Sheyn. I due plasmidi di confezionamento dei lentivirus sono stati donati dal laboratorio Simon Knott (Dipartimento di Scienze Biomediche, Cedars-Sinai Medical Center).

....

Materials

NameCompanyCatalog NumberComments
2-mercaptoethanol Sigma AldrichM3148
AccutaseStemCell Technologies7920cell dissociation reagent
Antibiotic-antimycotic solutionThermofisher15240096
Anti-CD105Ancell326-050
APC mouse anti-human CD44BD Biosciences559942
APC mouse IgG2 K isotype controlBD Biosciences555745
BenchMark fetal bovine serumGeminiBio100-106
BiglycanThermofisherHs00959143_m1
Bovine serum albuminMillipore SigmaA3733
Collagen type I alpha 1 chain human Taqman primerThermofisherHs00164004_m1
Collagen type III alpha 1 chain human Taqman primerThermofisherHs00943809_m1
Dimethyl sulfoxideMillipore SigmaD8418
DMEM, low glucose, pyruvate, no glutamine, no phenol redThermofisher11054020
Eagle's minimum essential medium (EMEM)ATCC30-2003
Fibronectin bovine plasmaSigma AldrichF1141
FITC mouse anti-human CD90BD Biosciences555595
Gelatin from porcine skinSigma AldrichG1890
Goat anti Mouse IgG1-PEBio-RadSTAR117
HEK 293T/17ATCCCRL-11268
IMDM, no phenol redThermofisher21056023
iPSCs: 83i-cntr-33n1Cedars-Sinai iPSC Core FacilityN/Ahttps://biomanufacturing.cedars-sinai.org/product/cs83ictr-33nxx/
Isotype Control Antibody, mouse IgG2a-FITCMiltenyi Biotec130-113-271
KnockOut serum replacementThermofisher10828010
L-ascorbic acidSigma AldrichA4544
L-GlutamineThermofisher2503081
MatrigelCorning354230basement membrane matrix
MechanoCulture FXCellScaleN/Astretching apparatus
MEM non-essential amino acids solutionThermofisher11140050
Mohawk human Taqman primerThermofisherHs00543190_m1
mTeSR PlusStemCell Technologies100-0276
PBSThermofisher10010023
Platelet-derived growth factor receptor A human Taqman primerThermofisherHs00998018_m1
Poly(2-hydroxyethyl methacrylate)Sigma Aldrich192066
Polybrene infection/transfection reagentsMillipore SigmaTR-1003
Recombinant human  TGF-beta 1 protein human Taqman primerRnD Systems240-B
Scleraxis human Taqman primerThermofisherHs03054634_g1
SCXA (SCX) (NM_00108050514) human tagged ORF cloneOriGeneRC224305L4
Silicone platesCellScaleN/A
Sodium azideMillipore SigmaS2002
Tenascin C human Taqman primerThermofisherHs00370384_m1
Tenomodulin human Taqman primerThermofisherHs00223332_m1
Thrombospondin 4 human Taqman primerThermofisherHs00170261_m1
Transfection reagent, BioTBioland Scientific LLCB01-01
Trypsin-EDTA (0.25%)Thermofisher25200072
Tubulin polymerization promoting protein family member 3ThermofisherHs03043892_m1
Y-27632 dihydrochlorideBiogems1293823

References

  1. Lim, W. L., Liau, L. L., Ng, M. H., Chowdhury, S. R., Law, J. X. Current progress in tendon and ligament tissue engineering. Tissue Engineering and Regenerative. 16 (6), 549-571 (2019).
  2. Sheyn, D., et al.

Explore More Articles

BioingegneriaNumero 205

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved