Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Genetically encoded calcium indicators (GECI) enable a robust, population-level analysis of sensory neuron signaling. Here, we have developed a novel approach that allows for in vivo GECI visualization of rat trigeminal ganglia neuron activity.

Abstract

Genetically encoded calcium indicators (GECIs) enable imaging techniques to monitor changes in intracellular calcium in targeted cell populations. Their large signal-to-noise ratio makes GECIs a powerful tool for detecting stimulus-evoked activity in sensory neurons. GECIs facilitate population-level analysis of stimulus encoding with the number of neurons that can be studied simultaneously. This population encoding is most appropriately done in vivo. Dorsal root ganglia (DRG), which house the soma of sensory neurons innervating somatic and visceral structures below the neck, are used most extensively for in vivo imaging because these structures are accessed relatively easily. More recently, this technique was used in mice to study sensory neurons in the trigeminal ganglion (TG) that innervate oral and craniofacial structures. There are many reasons to study TG in addition to DRG, including the long list of pain syndromes specific to oral and craniofacial structures that appear to reflect changes in sensory neuron activity, such as trigeminal neuralgia. Mice are used most extensively in the study of DRG and TG neurons because of the availability of genetic tools. However, with differences in size, ease of handling, and potentially important species differences, there are reasons to study rat rather than mouse TG neurons. Thus, we developed an approach for imaging rat TG neurons in vivo. We injected neonatal pups (p2) intraperitoneally with an AAV encoding GCaMP6s, resulting in >90% infection of both TG and DRG neurons. TG was visualized in the adult following craniotomy and decortication, and changes in GCaMP6s fluorescence were monitored in TG neurons following stimulation of mandibular and maxillary regions of the face. We confirmed that increases in fluorescence were stimulus-evoked with peripheral nerve block. While this approach has many potential uses, we are using it to characterize the subpopulation(s) of TG neurons changed following peripheral nerve injury.

Introduction

Somatosensation, the neural encoding of mechanical, thermal, and chemical stimuli impinging on the skin or other bodily structures, including muscles, bone, and viscera, starts with activity in primary afferent neurons that innervate these structures1. Single unit based electrophysiological approaches have provided a wealth of information about the afferent subtypes involved in this process as well as how their stimulus-responses properties may change over time1,2,3. However, while there remains strong evidence in support of the labeled line theory, wh....

Protocol

All experiments involving the use of animals in research were performed in accordance with standards put forth by the National Institutes of Health and the International Association for the Study of Pain and were approved by the University of Pittsburgh Institutional Animal Care and Use Committee (protocol #22051100). At the end of each experiment, rats were euthanized via exanguination with cardiac perfusion of ice-cold phosphate-buffered saline (PBS), an approach approved by the American Veterinary Medical Association .......

Representative Results

Because we have previously had success with the AAV9 serotype for the infection of rat sensory neurons15, we used this serotype for the expression of GCaMP6s in rat TG neurons. We therefore first sought to assess the sensory neuron infection efficiency of AAV9-CAG-GCaMP6s-WPRE-SV40 (AAV9-GCaMP) when this virus was administered to neonatal rat pups20. This virus utilizes the CAG promoter, which drives and maintains high levels of gene expression. Furthermore, AAV9 has been s.......

Discussion

Here, we demonstrate a quick, non-invasive way of generating a GECI rat for imaging the TG. We chose a CAG promotor to drive and maintain high levels of gene expression. While previous studies suggest that other AAV serotypes may efficiently drive gene expression in DRG neurons39, our results are consistent with a recent study involving intraperitoneal injection of AAV in neonates32, indicating that the AAV9 serotype is highly efficient in the infection of rat neonatal sens.......

Acknowledgements

We would like to thank Drs. Kathy Albers and Brian Davis for the use of their Leica Microscope and Metamorph program, Charles Warwick for helping to build our thermal Peltier device, and Dr. Raymond Sekula for helping with troubleshooting the surgical preparation. This work was supported by grants from the National Institutes of Health: F31NS125993 (JYG), T32NS073548 (JYG), and R01NS122784 (MSG and RS).

....

Materials

NameCompanyCatalog NumberComments
AAV9-CAG-WPRE-GCaMP6s-SV40 Addgene100844-AAV9AAV9-GCaMP6s virus
ACEpromazine maleateCovetrus11695-0095-510 mg/mL
AnaSed (Xylazine) injectionAKORN Animal Health23076-35-920 mg/mL
CTR5500 Electronics boxLeica11 888 820Power Supply
Cutwell burr drill bitRansom & Randolph¼ round
DM 6000 FSLeica11 888 928Base Stand
EL6000LeicaEL6000Light source with 120 W mercury bulb
ForcepsFST11252-00Dumont No. 05
Friedman rongeursFST16000-142.5 mm cup size
Friedman-Pearson rongeursFST16021-141 mm cup size
Heating pad (Temperature therapy pad)STRYKER8002-062-022
Ketamine hydrochlorideCovetrus1695-0703-1100 mg/mL
Plan Fluor 20x/0.40LeicaMRH0010520x objective, 0.4 NA10.8 mm WD
Power handle high-temp cautery penBovieHIT1handheld Change-A-Tip cautery pen
Prime 95BPhotometricsPrime 95BCMOS Camera
SalineFisher ScientificNC02917990.9% Sterile Saline
Scalpel bladeFisher Scientific22-079-701size 15 disposable blade
SpatulaBRI48-1460brain spatula
Spring scissorsFST91500-09Student Vannas, 5 mm cutting edge
Spring scissorsFST15012-12Noyes, 14 mm cutting edge
STP6000 Smart touch panelLeica11 501 255Control Panel
SyringeHamilton8020125 μL Model 1702 Luer Tip syringe
Water heaterAdroitHTP-1500

References

  1. Gold, M. S., Gebhart, G. F. Nociceptor sensitization in pain pathogenesis. Nat Med. 16 (11), 1248-1257 (2010).
  2. Gold, M. S., Caterina, M. J. . The Senses: A Comprehensive Reference. , (2008).
  3. Lawson, S. N., Fang, X., Djouhri, L.

Explore More Articles

In vivo Calcium ImagingTrigeminal GanglionSensory NeuronsNeuropathic PainNaV1 1Transgenic MiceGenetically Encoded Calcium Indicators GECIsDorsal Root Ganglia DRGCraniofacial Pain

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved