JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Periferik lens yapısını, hücre morfolojisini ve organizasyonunu görselleştirmek ve ölçmek için tam montajlı görüntüleme

Published: January 19th, 2024

DOI:

10.3791/66017

1Department of Biological Sciences, University of Delaware, 2School of Optometry and Vision Science Program, Indiana University, 3Department of Biomedical Engineering, University of Delaware
* These authors contributed equally

Mevcut protokoller, oküler lensteki periferik yapıların görüntü niceleme yöntemleriyle görselleştirilmesi için yeni tam montajlı görüntülemeyi tanımlamaktadır. Bu protokoller, lens mikro ölçekli yapıları ile lens gelişimi/işlevi arasındaki ilişkiyi daha iyi anlamak için yapılan çalışmalarda kullanılabilir.

Oküler lens, ışığı farklı mesafelerden retinaya odaklamak için şeklini değiştiren şeffaf esnek bir dokudur. Kapsül adı verilen organı çevreleyen bir bazal zarın yanı sıra, lens, ön hemisferde tek katmanlı bir epitel hücresi tabakası ve bir yığın lens lifi hücresi kütlesinden oluşan tamamen hücreseldir. Yaşam boyunca, epitel hücreleri lens ekvatorundaki çimlenme bölgesinde çoğalır ve ekvatoral epitel hücreleri göç eder, uzar ve yeni oluşan lif hücrelerine farklılaşır. Ekvatoral epitel hücreleri, rastgele paketlenmiş parke taşı şeklindeki hücrelerden morfolojiyi, meridyen sıraları oluşturan hizalanmış altıgen şekilli hücrelere büyük ölçüde değiştirir. Yeni oluşan mercek lifi hücreleri, altıgen hücre şeklini korur ve ön ve arka kutuplara doğru uzar, böylece önceki nesil liflerin üzerine binen yeni bir hücre kabuğu oluşturur. Lens epitel hücrelerinin lif hücrelerine dikkat çekici morfogenezini yönlendiren mekanizmalar hakkında çok az şey bilinmektedir. Lens yapısını, gelişimini ve işlevini daha iyi anlamak için, tüm oküler lens yuvalarını kullanarak periferik yapıları görüntülemek için yeni görüntüleme protokolleri geliştirilmiştir. Burada, kapsül kalınlığını, epitel hücre alanını, hücre nükleer alanını ve şeklini, meridyen sıra hücre sırasını ve paketlemesini ve lif hücre genişliklerini ölçme yöntemleri gösterilmektedir. Bu ölçümler, yaşam boyu lens büyümesi sırasında meydana gelen hücresel değişiklikleri aydınlatmak ve yaş veya patoloji ile meydana gelen değişiklikleri anlamak için gereklidir.

Oküler lens, gözün ön bölgesinde yer alan ve ışığı retinaya ince odaklama işlevi gören esnek, şeffaf bir dokudur. Lensin işlev görme yeteneği, kısmen karmaşık mimarisine ve organizasyonunabağlanabilir 1,2,3,4,5,6. Lens dokusunu çevreleyen, lens yapısını ve biyomekanik özelliklerini korumak için gerekli olan bir bazal membranolan kapsüldür 7,8,9. Lensin kendisi tamamen hücreseldir ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Fareler, patojen içermeyen bir ortamda tutulan Delaware Üniversitesi hayvan tesisinde barındırılır. CO2 inhalasyonu ile ötenazi de dahil olmak üzere tüm hayvan prosedürleri, Delaware Üniversitesi Kurumsal Hayvan Bakımı ve Kullanımı Komitesi (IACUC) tarafından onaylanmış hayvan protokollerine uygun olarak gerçekleştirildi.

1. Tüm lens yuvası hazırlığı ve görüntüleme

  1. Tüm montaj görüntüleme için lenslerin sabitlenmesi
    1. .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ön lens kapsülü, epitel hücre alanı ve nükleer alan
Lens kapsülü kalınlığını analiz etmek için, canlı veya sabit lenslerdeki lens kapsüllerini WGA ile boyadık. Lens epitel hücrelerini, canlı lenslerde membranları tdTomato ile etiketleyerek (Şekil 2A) veya sabit lenslerde hücre membranlarında F-aktin için rodamin-phalloidin boyaması yoluyla tanımladık (Şekil 2B). Ortogonal (XZ) bir projeksiyonda, WGA ve tdTomato/rod.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Açıklanan protokoller, lensin ön ve ekvator bölgelerindeki periferik lens yapılarının ve hücrelerinin yüksek uzamsal çözünürlüklü görselleştirilmesini sağlar. Bu çalışmada, genel 3D lens mimarisinin korunduğu sağlam (canlı veya sabit) lensler kullanılarak lens çevre yapılarının görüntülenmesine yönelik yöntemler gösterilmiştir. Ek olarak, halka açık FIJI ImageJ yazılımı kullanılarak morfometrik kantitatif analiz için basit yöntemler sağlanmıştır. Tüm montaj görselleştirm.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Bu çalışma, CC'ye EY032056 Ulusal Göz Enstitüsü Hibe R01 ve VMF'ye EY017724 R01'in yanı sıra P20GM139760 numaralı hibe numarası altında Ulusal Genel Tıp Bilimleri Enstitüsü tarafından desteklenmiştir. S.T.I, Kimya-Biyoloji Arayüzü doktora öncesi eğitim programının bir parçası olarak NIH-NIGMS T32-GM133395 ve Delaware Üniversitesi Lisansüstü Akademisyenler Ödülü tarafından desteklenmiştir.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
3 mm Biopsy PunchAcuderm IncNC9084780
AgaroseApex BioResearch Products20-102GP
Antimycotic/AntibioticCytivaSV30079.01
Bovine Serum Albumin (Fraction V)Prometheus25-529
Delicate task wipesKimwipe
Glass bottomed dish (Fluorodish)World Precision InternationalFD35-100
Hoescht 33342Biotium40046
Laser scanning confocal Microscope 880Zeiss
MatTek Imaging DishMatTek Life SciencesP35G-1.5-14
Paraformaldehyde Electron Microscopy Sciences100503-917
PBSGenClone25-507B
Phenol red-free medium 199Gibco11043023
Rhodamine-PhalloidinThermo Fisher00027
Triton X100Sigma-Aldrich11332481001
WGA-640BiotiumCF 640R

  1. Gokhin, D. S., et al. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One. 7 (11), e48734 (2012).
  2. Cheng, C., et al. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging (Albany NY). 11 (24), 12497-12531 (2019).
  3. Cheng, C., et al. Tropomodulin 1 regulation of actin is required for the formation of large paddle protrusions between mature lens fiber cells. Invest Ophthalmol Vis Sci. 57 (10), 4084-4099 (2016).
  4. Parreno, J., Cheng, C., Nowak, R. B., Fowler, V. M. The effects of mechanical strain on mouse eye lens capsule and cellular microstructure. Mol Biol Cell. 29 (16), 1963-1974 (2018).
  5. Sindhu Kumari, S., et al. Role of Aquaporin 0 in lens biomechanics. Biochem Biophys Res Commun. 462 (4), 339-345 (2015).
  6. Martin, J. B., et al. Arvcf dependent adherens junction stability is required to prevent age-related cortical cataracts. Front Cell Dev Biol. 10, 840129 (2022).
  7. Danysh, B. P., Duncan, M. K. The lens capsule. Exp Eye Res. 88 (2), 151-164 (2009).
  8. Mekonnen, T., et al. The lens capsule significantly affects the viscoelastic properties of the lens as quantified by optical coherence elastography. Front Bioeng Biotechnol. 11, 1134086 (2023).
  9. Fincham, E. F. The function of the lens capsule in the accommodation of the eye. Trans Optical Society. 30 (3), 101 (1929).
  10. Cheng, C., Nowak, R. B., Fowler, V. M. The lens actin filament cytoskeleton: Diverse structures for complex functions. Exp Eye Res. 156, 58-71 (2017).
  11. Bassnett, S., Sikic, H. The lens growth process. Prog Retin Eye Res. 60, 181-200 (2017).
  12. Sikic, H., Shi, Y., Lubura, S., Bassnett, S. A full lifespan model of vertebrate lens growth. R Soc Open Sci. 4 (1), 160695 (2017).
  13. Cheng, C., Ansari, M. M., Cooper, J. A., Gong, X. EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development. 140 (20), 4237-4245 (2013).
  14. Sugiyama, Y., Akimoto, K., Robinson, M. L., Ohno, S., Quinlan, R. A. A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol. 336 (2), 246-256 (2009).
  15. Zampighi, G. A., Eskandari, S., Kreman, M. Epithelial organization of the mammalian lens. Exp Eye Res. 71 (4), 415-435 (2000).
  16. Lovicu, F. J., Robinson, M. L. . Development of the Ocular Lens. , (2011).
  17. Kuszak, J. R., Zoltoski, R. K., Sivertson, C. Fibre cell organization in crystalline lenses. Exp Eye Res. 78 (3), 673-687 (2004).
  18. Cvekl, A., Ashery-Padan, R. The cellular and molecular mechanisms of vertebrate lens development. Development. 141 (23), 4432-4447 (2014).
  19. Vu, M. P., Cheng, C. Preparation and immunofluorescence staining of bundles and single fiber cells from the cortex and nucleus of the eye lens. J Vis Exp. (196), e65638 (2023).
  20. Islam, S. T., Cheng, C., Parreno, J., Fowler, V. M. Nonmuscle myosin IIA regulates the precise alignment of hexagonal eye lens epithelial cells during fiber cell formation and differentiation. Invest Ophthalmol Vis Sci. 64 (4), 20 (2023).
  21. Patel, S. D., Aryal, S., Mennetti, L. P., Parreno, J. Whole mount staining of lenses for visualization of lens epithelial cell proteins. MethodsX. 8, 101376 (2021).
  22. Parreno, J., et al. Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells. Front Cell Dev Biol. 10, 983178 (2022).
  23. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45 (9), 593-605 (2007).
  24. Zhang, Y., et al. Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood. 119 (1), 238-250 (2012).
  25. Cheng, C., Gokhin, D. S., Nowak, R. B., Fowler, V. M. Sequential application of glass coverslips to assess the compressive stiffness of the mouse lens: Strain and morphometric analyses. J Vis Exp. (111), e53986 (2016).
  26. Riedl, J., et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 5 (7), 605-607 (2008).
  27. Lukinavicius, G., et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods. 11 (7), 731-733 (2014).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved