A subscription to JoVE is required to view this content. Sign in or start your free trial.
The manuscript describes a protocol for radio frequency magnetron sputtering of Bi2Te3 and Sb2Te3 thermoelectric thin films on glass substrates, which represents a reliable deposition method that provides a wide range of applications with the potential for further development.
Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method. The thin films were deposited on soda lime glass substrates at ambient temperature. The substrates were first washed using water and soap, ultrasonically cleaned with methanol, acetone, ethanol, and deionized water for 10 min, dried with nitrogen gas and hot plate, and finally treated under UV ozone for 10 min to remove residues before the coating process. A sputter target of Bi2Te3 and Sb2Te3 with Argon gas was used, and pre-sputtering was done to clean the target's surface. Then, a few clean substrates were loaded into the sputtering chamber, and the chamber was vacuumed until the pressure reached 2 x 10-5 Torr. The thin films were deposited for 60 min with Argon flow of 4 sccm and RF power at 75 W and 30 W for Bi2Te3 and Sb2Te3, respectively. This method resulted in highly uniform n-type Bi2Te3 and p-type Sb2Te3 thin films.
Thermoelectric (TE) materials have been attracting a considerable amount of research interest regarding their ability to convert thermal energy into electricity via the Seebeck effect1 and refrigeration via Peltier cooling2. The conversion efficiency of TE material is determined by the temperature difference between the hot end of the TE leg and the cold end. Generally, the higher the temperature difference, the higher the TE figure of merit and the higher its efficiency3. TE works with no requirement for additional mechanical parts involving gas or liquid in its process, pro....
1. Substrate preparation
Cross-sectional micrographs of as-deposited Bi2Te3 and Sb2Te3 thin films were recorded using FESEM as shown in Figure 3A and Figure 3B, respectively. The surface of the overall film appears uniform and smooth. It is apparent that the crystal grains of the Bi2Te3 thin film were hexagonal, conforming the crystal structure of Bi2Te3 while the crystal grains of the Sb2.......
The technique presented in this paper presents no significant difficulty in setting up the equipment and implementation. However, several critical steps need to be highlighted. As mentioned in step 2.2.10 of the protocol, optimum vacuum condition is key to produce high quality thin films with less contamination as vacuum removes residual oxygen in the chamber37. The presence of oxygen can cause cracks in the films called stress cracking indicating the importance of high vacuum system in sputtering.......
The authors would like to acknowledge the financial support from Universiti Kebangsaan Malaysia research grant: UKM-GGPM-2022-069 to carry out this research.
....Name | Company | Catalog Number | Comments |
Acetone | Chemiz (M) Sdn. Bhd. | 1910151 | Liquid, Flammable |
Antimony Telluride, Sb2Te3 | China Rare Metal Material Co.,Ltd | C120222-0304 | Diameter 50.8 mm, Thickness 6.35 mm, 99.999% purity |
Bismuth Telluride, Bi2Te3 | China Rare Metal Material Co.,Ltd | CB151208-0501 | Diameter 50.8 mm, Thickness 4.25 mm, 99.999% purity |
Ethanol | Chemiz (M) Sdn. Bhd. | 2007081 | Liquid, Flammable |
Field Emission Scanning Electron Microscope | Zeiss | MERLIN | Equipped with EDX |
Hall effect measurement system | Aseptec Sdn. Bhd. | HMS ECOPIA 3000 | - |
Handheld digital multimeter | Prokits Industries Sdn. Bhd. | 303-150NCS | - |
HMS-3000 | Aseptec Sdn Bhd. | HMS ECOPIA 3000 | Hall effect measurement software |
Linseis_TA | Linseis Messgeräte GmbH | LSR-3 | Linseis thermal analysis software |
Methanol | Chemiz (M) Sdn. Bhd. | 2104071 | Liquid, Flammable |
RF-DC magnetron sputtering | Kurt J. Lesker Company | - | Customized hybrid system |
Seebeck coefficient measurement system | Linseis Messgeräte GmbH | LSR-3 | - |
SmartTiff | Carl Zeiss Microscopy Ltd | - | SEM image thickness measurement software |
Ultrasonic bath | Fisherbrand | FB15055 | - |
UV ozone cleaner | Ossila Ltd | L2002A3-UK | - |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved