Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to obtain the pVAX1-PRRSV expression vector by introducing suitable restriction sites at the 3' end of the inserts. We can linearize the vector and join DNA fragments to the vector one by one through homologous recombination technology.

Abstract

The construction of gene expression vectors is an important component of laboratory work in experimental biology. With technical advancements like Gibson Assembly, vector construction becomes relatively simple and efficient. However, when the full-length genome of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) cannot be easily amplified by a single polymerase chain reaction (PCR) from cDNA, or it is difficult to acquire a full-length gene expression vector by homologous recombination of multiple inserts in vitro, the current Gibson Assembly technique fails to achieve this goal.

Consequently, we aimed to divide the PRRSV genome into several fragments and introduce appropriate restriction sites into the reverse primer for obtaining PCR-amplified fragments. After joining the previous DNA fragment into the vector by homologous recombination technology, the new vector acquired the restriction enzyme cleavage site. Thus, we can linearize the vector by using the newly added enzyme cleavage site and introduce the next DNA fragment downstream of the upstream DNA fragment.

The introduced restriction enzyme cleavage site at the 3' end of the upstream DNA fragment will be eliminated, and a new cleavage site will be introduced into the 3' end of the downstream DNA fragment. In this way, we can join DNA fragments to the vector one by one. This method is applicable to successfully construct the PRRSV expression vector and is an effective method for assembling a large number of fragments into the expression vector.

Introduction

As an essential technique to construct DNA-based experimental tools for expression in prokaryotic and eukaryotic cells, molecular cloning is a very important component of experimental biology. Molecular cloning involves four processes: the acquisition of insert DNA, ligation of the insert into the appropriate vector, transformation of the recombinant vector into Escherichia coli (E. coli), and identification of the positive clones1. So far, multiple methods have been adopted for joining DNA molecules by using restriction enzymes2,3 and PCR-mediated recombination

Protocol

1. Preparation of the template of the PRRSV gene

  1. Thaw the virus stock in 1 mL of RNA extraction reagent (see Table of Materials).
  2. Add 0.2 mL of chloroform and mix thoroughly. Incubate for 3 min.
  3. Centrifuge the mixture for 15 min at 12,000 × g at 4 °C.
    NOTE: The mixture is divided into three phases, namely, a colorless aqueous phase, an interphase, and a red phenol-chloroform phase.
  4. Pipet the colorless aqueous phase out a.......

Representative Results

In this paper, we present an in vitro recombination system to assemble and repair overlapping DNA molecules using the reverse primer via continually introduced restriction sites (Figure 1B). This system is a simple and efficient procedure comprising the preparation of the linear vector and the insert fragments containing overhangs introduced by PCR with primers having appropriate 5' extension sequences and restriction sites; an in vitro single isothermal reaction and th.......

Discussion

The Gibson assembly technique is an in vitro recombination-based molecular cloning method for the assembly of DNA fragments8. This method enables the assembly of multiple DNA fragments into a circular plasmid in a single-tube isothermal reaction. However, one of the obstacles to the Gibson Assembly technique is the acquisition of long fragments from cDNA. The long fragments are difficult to accurately amplify for many reasons. For example, primers are easier to mismatch during long extend.......

Acknowledgements

This work was supported by the financial support of the doctoral research initiation funds provided by the China West Normal University (No. 20E059).

....

Materials

NameCompanyCatalog NumberComments
1 kb plus DNA LadderTiangen Biochemical Technology (Beijing) Co., LtdMD113-02
2x Universal Green PCR Master MixRong Wei Gene Biotechnology Co., LtdA303-1
AgaroseSangon Biotech (Shanghai) Co., Ltd.9012-36-6
Benchtop MicrocentrifugeThermo Fisher Scientific  Co., LtdFRESCO17
Clean BenchSujing Antai Air Technology  Co., LtdVD-650-U
DNA Electrophoresis EquipmentCleaver Scientific  Co., Ltd170905117
DNA Loading Buffer (6x)Biosharp Biotechnology Co., LtdBL532A
E. Z. N. A. Gel Extraction kitOmega Bio-Tek Co., LtdD2500-01
E.Z.N.A. Plasmid DNA Mini Kit IOmega Bio-Tek Co., LtdD6943-01
Electro-heating Standing-temperature CultivatorShanghai Hengyi Scientific Instrument Co., LtdDHP-9082
ExonArt Seamless Cloning and Assembly kitRong Wei Gene Biotechnology Co., LtdA101-02
ExonScript RT SuperMix with dsDNaseRong Wei Gene Biotechnology Co., LtdA502-1
FastDigest Eco321 (EcoRV)Thermo Fisher Scientific  Co., LtdFD0303
FastDigest HindIIIThermo Fisher Scientific  Co., LtdFD0504
FastDigest NheIThermo Fisher Scientific  Co., LtdFD0974
FastDigest NotIThermo Fisher Scientific  Co., LtdFD0596
Gel Doc XRBio-Rad Laboratories Co., Ltd721BR07925
Goldview Nucleic Acid Gel StainShanghai Yubo Biotechnology Co., LtdYB10201ES03
Ice Maker MachineShanghai Bilang Instrument Manufacturing Co., LtdFMB100
Invitrogen Platinum SuperFi II DNA PolymeraseThermo Fisher Scientific  Co., Ltd12361010
LB Agar Plate (Kanamycin)Sangon Biotech (Shanghai) Co., Ltd.B530113-0010
LB sterile liquid medium (Kanamycin)Sangon Biotech (Shanghai) Co., Ltd.B540113-0001
MicropipettorsThermo Fisher Scientific  Co., Ltd
Microwave OvenPanasonic Electric (China) Co., LtdNN-GM333W
Orbital ShakersShanghai Zhicheng Analytical Instrument Manufacturing Co., LtdZHWY-2102C
PRRSV virusSichuan Agricultural University
SnapGeneGSL Biotech, LLCv5.1To design primers
T100 PCR Gradient Thermal CyclerBio-Rad Laboratories  Co., LtdT100 Thermal Cycler
TAE bufferSangon Biotech (Shanghai) Co., Ltd.B040123-0010
TRIzol ReagentThermo Fisher Scientific  Co., Ltd15596026RNA extraction reagent

References

  1. Lessard, J. C. Molecular cloning. Methods Enzymol. 529, 85-98 (2013).
  2. Shetty, R. P., Endy, D., Knight, T. F. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).
  3. Horton, R. M., Cai, Z. L., Ho, S. N., Pease, ....

Explore More Articles

CloningPRRSVExpression VectorGibson AssemblyPCRRestriction SitesHomologous RecombinationDNA Fragment Assembly

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved