JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

13C6-Glucose Labeling Associated with LC-MS: Identification of Plant Primary Organs in Secondary Metabolite Synthesis

Published: March 22nd, 2024

DOI:

10.3791/66578

1State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 2College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 3Department of Pharmacy, Ya'an People's Hospital

The developed method of 13C6-Glucose labeling combined with liquid chromatography high-resolution mass spectrometry is versatile and lays the foundation for future studies on the primary organs and pathways involved in the synthesis of secondary metabolites in medicinal plants, as well as the comprehensive utilization of these secondary metabolites.

This paper presents a novel and efficient method for certifying primary organs involved in secondary metabolite synthesis. As the most important secondary metabolite in Parispolyphylla var. yunnanensis (Franch.) Hand. -Mzt. (PPY), Paris saponin (PS) has a variety of pharmacological activities and PPY is in increasing demand. This study established leaf, rhizome, and stem-vascular-bundle 13C6-Glucose feeding and non-feeding four treatments to precisely certify the primary organs involved in Paris saponins VII (PS VII) synthesis. By combining liquid chromatography-mass spectrometry (LC-MS), the 13C/12C ratios of leaf, rhizome, stem, and root in different treatments were quickly and accurately calculated, and four types of PS isotopic ion peak(M) ratios were found: (M+1) /M, (M+2) /M, (M+3) /M and (M+4) /M. The results showed that the ratio of 13C/12C in the rhizomes of the stem-vascular-bundle and rhizome feeding treatments was significantly higher than that in the non-feeding treatment. Compared to the non-feeding treatment, the ratio of PS VII molecules (M+2) /M in the leaves increased significantly under leaf and stem-vascular-bundle feeding treatments. Simultaneously, compared to the non-feeding treatment, the ratio of PS VII molecules (M+2) /M in the leaves under rhizome treatment showed no significant difference. Furthermore, the ratio of PS VII molecules (M+2) /M in the stem, root, and rhizome showed no differences among the four treatments. Compared to the non-feeding treatment, the ratio of the Paris saponin II (PS II) molecule (M+2) /M in leaves under leaf feeding treatment showed no significant difference, and the (M+3) /M ratio of PS II molecules in leaves under leaf feeding treatment were lower. The data confirmed that the primary organ for the synthesizing of PS VII is the leaves. It lays the foundation for future identification of the primary organs and pathways involved in the synthesis of secondary metabolites in medicinal plants.

The biosynthetic pathways of secondary metabolites in plants are intricate and diverse, involving highly specific and diverse accumulation organs1. At present, the specific synthesis sites and responsible organs for secondary metabolites in many medicinal plants are not well-defined. This ambiguity poses a significant obstacle to the strategic advancement and implementation of cultivation methods designed to optimize both the yield and quality of medicinal materials.

Molecular biology, biochemical, and isotope labeling techniques are extensively employed to unravel the synthesis pathways and sites of secondary metabo....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Experimental preparation

  1. Make sure that during plant growth, the relative humidity of the greenhouse is 75%, the day/night temperatures are 20 °C/10 °C, the photoperiod is made up of 12 h day and 12 h night, and the light intensity is 100 µmol·m-2·s-1. Provide irradiance via light-emitting diode (LED) lamps, keeping a distance of 30 cm between the LED lamp and the plant canopy.
    NOTE: The photoperiod and light intensity are according to .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To confirm that 13C6-Glucose supply in rhizomes was successful, we further analyzed the 13C/12C isotope ratios in rhizomes. The 13C /12C isotope ratios of Treatments 3 and 4 were much higher than those of Treatment 2 (Figure 1A). The results indicated that 13C6-Glucose from Treatment 3 and 4 entered the rhizomes through ingestion.

The ratios of 13C isotope peaks, suc.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The successful implementation of this protocol hinges on comprehensive research into plant physiological properties, tissues, organs, and secondary metabolites. The experimental design approach outlined in the protocol lays a robust foundation for investigating the biosynthetic pathways of plant secondary metabolites. The critical factors in this experiment are (1) determining the age of the perennial seedlings and (2) choosing the correct isotope labeling-detection timing. The medicinal plants are categorized into peren.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was funded by the National Natural Science Foundation of China's Youth Program (No. 82304670).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
0.1 % Formic acid waterChengdu Kelong Chemical Reagent Factory44890
13C6-Glucose powderMERCK110187-42-3
AcetonitrileChengdu Kelong Chemical Reagent Factory44890
AUTOSAMPLER VIALSBiosharp Biotechnology Company44866
BEH C18 columnWaters,Milfor,MA1.7μm,2.1*100 mm
CNC ultrasonic cleanerKunshan Ultrasound Instrument Co., LtdKQ-600DE
Compound DiscovererTM  softwareThermo Scientific, Fremont,CA3
Compound DiscovererTM  software Thermo Scientific,Fremont,CA3
Electric constant temperature blast drying ovenDHG-9146A
Electronic analytical balanceSedolis Scientific Instruments Beijing Co., LtdSOP
Ethanol Chengdu Kelong Chemical Reagent Factory44955
Fully automatic sample rapid grinderShanghai Jingxin TechnologyTissuelyser-48
Gas Chromatography-Stable Isotope Ratio Mass SpectrometerThermo FisherDelta V Advantage
Hoagland solutionSigma-AldrichH2295-1L
Hydroponic tankJRD1020421
Isodat softwareThermo Fisher Scientific3
Liquid chromatography high-resolution mass spectrometryAgilent Technology Agilent 1260 -6120 
Nitrogen manufacturing instrumentPEAK SCIENTIFICGenius SQ 24
Organic phase filterTianjin Jinteng Experimental Equipment Co., Ltd44890
Oxygen pumpMagic DragonMFL
Quantum sensorHighpointUPRtek
ScalpelHandskit11-23
Sprinkling canCHUSHIWJ-001
Xcalibur  softwareThermo Fisher Scientific4.2

  1. Erb, M., Kliebenstein, D. J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 184 (1), 39-52 (2020).
  2. Li, Y., Kong, D., Fu, Y., Sussman, M. R., Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 148, 80-89 (2020).
  3. Liu, S., et al. Genetic and molecular dissection of ginseng (panax ginseng mey.) germplasm using high-density genic snp markers, secondary metabolites, and gene expressions. Front Plant Sci. 14, 1165349 (2023).
  4. Chen, X., Wang, Y., Zhao, H., Fu, X., Fang, S. Localization and dynamic change of saponins in cyclocarya paliurus (batal.) iljinskaja. PloS One. 14 (10), e0223421 (2019).
  5. Yuan, M., et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by lc-ms/ms. Nat Protoc. 14 (2), 313-330 (2019).
  6. Cavalli, F. M. G., Bourgon, R., Vaquerizas, J. M., Luscombe, N. M. Specond: A method to detect condition-specific gene expression. Genome Biol. 12 (10), R101 (2011).
  7. Epron, D., et al. Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects. Tree Physiology. 32 (6), 776-798 (2012).
  8. Varman, A. M., He, L., You, L., Hollinshead, W., Tang, Y. J. Elucidation of intrinsic biosynthesis yields using 13c-based metabolism analysis. Microb Cell Fact. 13 (1), 42 (2014).
  9. Meng-Meng, G., Zhen-Yu, Z., Yu, Z., Qiu-Lin, Y., Ying, W. Systematic extraction and stable isotope determination of different biomarkers from single leaf of reticulate vein plants. Journal of Shaanxi University of Science & Technology. 41 (01), 72-79 (2023).
  10. Zhang, H., et al. A convenient lc-ms method for assessment of glucose kinetics in vivo with d-[13c6]glucose as a tracer. Clin Chem. 55 (3), 527-532 (2009).
  11. Chassy, A. W., Adams, D. O., Waterhouse, A. L. Tracing phenolic metabolism in vitis vinifera berries with 13c6-phenylalanine: Implication of an unidentified intermediate reservoir. J Agric Food Chem. 62 (11), 2321-2326 (2014).
  12. Lozac'h, F., et al. Evaluation of cams for 14c microtracer adme studies: Opportunities to change the current drug development paradigm. Bioanalysis. 10 (5), 321-339 (2018).
  13. Sulyok, M., Stadler, D., Steiner, D., Krska, R. Validation of an lc-ms/ms-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal Bioanal Chem. 412 (11), 2607-2620 (2020).
  14. Serra, F., et al. Inter-laboratory comparison of elemental analysis and gas chromatography combustion isotope ratio mass spectrometry (gc-c-irms). Part i: Delta13c measurements of selected compounds for the development of an isotopic grob-test. J Mass Spectrom. 42 (3), 361-369 (2007).
  15. Jung, J. -. Y., Oh, M. -. K. Isotope labeling pattern study of central carbon metabolites using gc/ms. J Chromatogr B Analyt Technol Biomed Life Sci. 974, 101-108 (2015).
  16. Ding, Y. G., et al. The traditional uses, phytochemistry, and pharmacological properties of paris l. (liliaceae): A review. J Ethnopharmacol. 278, 114293 (2021).
  17. Cunningham, A. B., et al. Paris in the spring: A review of the trade, conservation and opportunities in the shift from wild harvest to cultivation of paris polyphylla (trilliaceae). J Ethnopharmacol. 222, 208-216 (2018).
  18. Madikizela, L. M., Ncube, S., Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci Total Environ. 636, 477-486 (2018).
  19. Tagami, K., Uchida, S. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry. Anal Chim Acta. 614 (2), 165-172 (2008).
  20. Li, Y., et al. The combination of red and blue light increases the biomass and steroidal saponin contents of paris polyphylla var. Yunnanensis. Ind Crops Prod. 194, 116311 (2023).
  21. Wang, G., et al. Tissue distribution, metabolism and absorption of rhizoma paridis saponins in the rats. J Ethnopharmacoly. 273, 114038 (2021).
  22. Peng, S., et al. Progress in the study of differences in the types and contents of steroidal saponins in paris. Polyphylla smith var. Chinensis (franch.) hara. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology. 24 (05), 2014-2025 (2022).
  23. Alami, M. M., et al. The current developments in medicinal plant genomics enabled the diversification of secondary metabolites' biosynthesis. Int J Mol Sci. 23 (24), 15932 (2022).
  24. Wen, F., et al. The synthesis of paris saponin vii mainly occurs in leaves and is promoted by light intensity. Front Plant Sci. 14, 1199215 (2023).
  25. Siadjeu, C., Pucker, B. Medicinal plant genomics. BMC Genomics. 24 (1), 429 (2023).
  26. Tian, C., et al. Top-down phenomics of arabidopsis thaliana: Metabolic profiling by one- and two-dimensional nuclear magnetic resonance spectroscopy and transcriptome analysis of albino mutants. J Biol Chem. 282 (25), 18532-18541 (2007).
  27. Masakapalli, S. K., et al. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production. Phytochemistry. 99, 73-85 (2014).
  28. Schwender, J., Ohlrogge, J. B., Shachar-Hill, Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing brassica napus embryos. J Biol Chem. 278 (32), 29442-29453 (2003).

Tags

Paris saponin

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved