A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes blood and urine sampling for measuring progesterone/estradiol and chorionic gonadotropin levels to determine the ovarian cycle stage. The hormone levels are used to predict and determine the timing of ovulation and hormones are injected to regulate the ovarian cycle and oocyte growth.
Common marmosets are small New World monkeys. Since many of their biological mechanisms are similar to those of humans, marmosets are potentially useful for medical and human biology research across a range of fields, such as neuroscience, regenerative medicine, and development. However, there is a lack of literature describing methods for many basic experiments and procedures. Here, detailed methods for determining the levels of sex hormones (progesterone, estradiol, and chorionic gonadotropin) in marmosets are described. The measurement of these hormones enables the prediction of the stage in the ovarian cycle, which is typically 26-30 days in marmosets; accurate determination is essential for the harvesting of oocytes/zygotes at the correct time point and for the preparation of host females for the generation of genetically modified marmosets.
Additionally, the measurement of sex hormone levels is useful for endocrinology, ethology, early development, and reproductive biology studies. This protocol provides a detailed description of the methods for blood sampling from the femoral vein, separation of plasma for hormone measurement, measuring chorionic gonadotropin levels using urine and plasma, resetting the ovarian cycle using injections of a prostaglandin F2α analog to shorten and synchronize the cycle, and promoting follicular growth and ovulation by injecting follicle-stimulating hormone and chorionic gonadotropin. Using these protocols, the stages in the ovarian cycle can be determined for the timely collection of oocytes/zygotes.
The common marmoset (Callithrix jacchus) is a small New World monkey with many characteristics similar to those of humans, and the duration of its ovarian cycle is 26-30 days1,2. Studies on the early development and the generation of genetically modified marmosets require the harvesting of oocytes and zygotes at specific stages in the ovarian cycle. Thus, accurate determination of the stage is crucial and can be estimated by measuring the blood levels of the hormones progesterone (P4) and estradiol (E2)2,3. These hormones promote endometrial growth, which is necessary for implantation. P4 is produced from the corpus luteum, which forms in ovaries immediately following ovulation. E2 is secreted by the ovarian follicles in response to follicle-stimulating hormone (FSH) from the hypothalamus-pituitary complex in the brain. E2 levels increase as the follicle matures, peaking before ovulation3. High E2 levels cause the pulsed release of luteinizing hormone (LH) via the hypothalamus-pituitary complex in humans; this LH surge induces ovulation. However, in marmosets, the LH gene underwent degeneration during evolution, and ovulation is instead induced by the release of chorionic gonadotropin (CG), which has a similar structure to LH's, from the pituitary gland4,5.
The ovarian cycle can be controlled by hormone injections. FSH injections, in humans, act on ovarian FSH receptors and are used to promote estrogen synthesis and follicle growth6. The injection of human CG (hCG) as a substitute for LH at the end of the follicular phase is used to stimulate ovulation in humans7. CG injections are also used to treat human infertility because CG stimulates the corpus luteum in early pregnancy, resulting in increased P4 production. Prostaglandin F2α (PGF2α) injections reset the ovarian cycle8. In domestic cattle, PGF2α injection is used to shorten the luteal phase and synchronize the estrus cycle for reproductive management.
Although marmosets and humans have similar biological mechanisms, making them ideal model animals, there is a lack of literature describing basic methods for many often-used techniques. Blood sampling is one of the most often used techniques9,10,11,12. However, beginners sometimes have trouble finding the vein. Hence, this study conducted anatomical analyses of the femoral vein region. Based on anatomical observations, this protocol introduces the proximal region of the femoral triangle as an easy site for venipuncture.
All methods involving marmosets utilized high ethical and welfare standards and were approved by the Institutional Animal Care and Use Committee at the National Center for Child Health and Development. Animals used here were single-housed or paired-housed (one female and one male) with 12 h of light per day.
1. Blood sampling of the femoral vein
2. Separation of plasma and determination of hormonal levels
3. Urine CG measurement to detect ovulation and pregnancy
NOTE: CG levels in marmosets can be measured using an immunochromatographic kit test for both ovulation and pregnancy. In the case of ovulation, a positive result can be obtained 0-2 days before ovulation. In the case of pregnancy, a positive result is detected from days 15-20 to approximately day 100 of pregnancy. The test requires a small amount (90 µL) of urine (one drop of urine is ~30 µL).
4. Control and determination of the ovarian cycle stage for the collection of oocytes, zygotes, and embryos
Details related to the animals used in this study are listed in Table 1.
Anatomical analyses of the femoral vein
Anatomical analyses of the femoral vein were performed using a 2-year-old male common marmoset (I 7713M) undergoing euthanasia. The femoral veins and arteries are located in the femoral triangle. The femoral triangle is formed at the boundaries between the abdominal wall and thigh muscles (Figure 1B-
Locating the vein is the most critical step in blood collection. Based on anatomical observations, this protocol introduces the proximal area in the femoral triangle as an easy site for blood collection in marmosets. Using this area, blood sampling from a large vein can be easily performed. However, even using this protocol, injury to an artery sometimes occurs. When injuring an artery, complete stopping of bleeding by applying pressure for >5 min is suggested to prevent hematoma. In addition, while applying pressure...
The authors have no conflicts of interest to declare.
We would like to thank Chunshen Shen, Hiroko Akutsu, Fumiyo Sugiki, Yuuna Hashimoto, Hina Naritomi, Yuuki Sakamoto, and Mikiko Horigome for their support in establishing this protocol and in the day-to-day care of marmosets; Takayuki Mineshige for comments on the manuscript; Yukiko Abe and the members of Aiba lab for sharing zygote collection techniques; CIEA for sharing the information on marmosets housing and experiments that they have cultivated over 40 years. This research was supported by AMED, JST, and KAKENHI under the grant Nos. JP19gm6310010, JP20gm6310010, JP21gm6310010, and JP22gm6310010 (AMED), JPMJPR228B (JST), 20H05764, 20H03177, and 22K18356 (KAKENHI).
Name | Company | Catalog Number | Comments |
AIA-360 | Tosoh Corporation | 0019945 | Hormone measurement (P4/E2) |
AIA-PACK DILUENT CONCENTRATE | Tosoh Corporation | 0020956 | Hormone measurement (P4/E2) |
AIA-PACK SUBSTRATE SET II | Tosoh Corporation | 0020968 | Hormone measurement (P4/E2) |
AIA-PACK WASH CONCENTRATE | Tosoh Corporation | 0020955 | Hormone measurement (P4/E2) |
CMS-1 | CLEA Japan | Marmoset food | |
Estrumate | MSD Animal Health | PGF2alpha analog (cloprostenol) | |
Gonal-f Subcutaneous Injection 150 | Merck Biopharma Co., Ltd. | FSH | |
Gonatropin for intramuscular injection 1000 | ASKA Pharmaceutical Co., Ltd. | 872413 | hCG |
Heparin sodium injection solution 5,000 units/5 mL | Mochida Pharmaceutical Co., Ltd. | 224122458 | Blood collection |
Immunochromatographic Test Kit for Detection of Common Marmoset Chorionic Gonadotropin (Dual Checker) | CLEA Japan, Inc. | Determining CG level | |
Low-profile double-arm microscope illumination LPF-SD | SHIOKAZE GIKEN | Desk lamp for blood collection | |
Marmoset blood collection restraint device | JIC Japan | JM-1006 | Blood collection http://www.jic-japan.jp/prd/marmoset/prd016.html email: vi@jic-japan.jp |
Metacam 0.05% | Boehringer Ingelheim Animal Health Japan Co., Ltd. | Hematoma treatment | |
Sample Cup, 3 mL, PS, for Tosoh 360 and AIA-600 II, 1000/Bag | Globe Scientific | 110913 | Hormone measurement (P4/E2) |
ST AIA-PACK iE2 | Tosoh Corporation | 0025224 | Hormone measurement (P4/E2) |
ST AIA-PACK iE2 CALIBRATOR SET | Tosoh Corporation | 0025324 | Hormone measurement (P4/E2) |
ST AIA-PACK iE2 SAMPLE DILUTING SOLUTION | Tosoh Corporation | 0025524 | Hormone measurement (P4/E2) |
ST AIA-PACK PROGIII | Tosoh Corporation | 0025240 | Hormone measurement (P4/E2) |
ST AIA-PACK PROGIII CALIBRATOR SET | Tosoh Corporation | 0025340 | Hormone measurement (P4/E2) |
ST AIA-PACK PROGIII SAMPLE DILUTING SOLUTION | Tosoh Corporation | 0025540 | Hormone measurement (P4/E2) |
Syringe with 25 G (0.50 x 25 mm) needle | TERUMO | SS-01T2525 | Blood collection |
Tensolvet 5.000 I.E. gel. | Dechra Pharmaceuticals | 14033492 | Hematoma treatment |
TOSOH MULTI-CONTROL SET | Tosoh Corporation | 0015965 | Hormone measurement (P4/E2) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved