Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes an efficient method for quantitatively detecting DNA oxidative damage in MCF-7 cells by ELISA technology.

Abstract

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) base is the predominant form of commonly observed DNA oxidative damage. DNA impairment profoundly impacts gene expression and serves as a pivotal factor in stimulating neurodegenerative disorders, cancer, and aging. Therefore, precise quantification of 8-oxoG has clinical significance in the investigation of DNA damage detection methodologies. However, at present, the existing approaches for 8-oxoG detection pose challenges in terms of convenience, expediency, affordability, and heightened sensitivity. We employed the sandwich enzyme-linked immunosorbent assay (ELISA) technique, a highly efficient and swift colorimetric method, to detect variations in 8-oxo-dG content in MCF-7 cell samples stimulated with different concentrations of hydrogen peroxide (H2O2). We determined the concentration of H2O2 that induced oxidative damage in MCF-7 cells by detecting its IC50 value in MCF-7 cells. Subsequently, we treated MCF-7 cells with 0, 0.25, and 0.75 mM H2O2 for 12 h and extracted 8-oxo-dG from the cells. Finally, the samples were subjected to ELISA. Following a series of steps, including plate spreading, washing, incubation, color development, termination of the reaction, and data collection, we successfully detected changes in the 8-oxo-dG content in MCF-7 cells induced by H2O2. Through such endeavors, we aim to establish a method to evaluate the degree of DNA oxidative damage within cell samples and, in doing so, advance the development of more expedient and convenient approaches for DNA damage detection. This endeavor is poised to make a meaningful contribution to the exploration of associative analyses between DNA oxidative damage and various domains, including clinical research on diseases and the detection of toxic substances.

Introduction

DNA oxidative damage is a consequence of an imbalance between the generation of reactive oxygen species (ROS) and the cellular antioxidant defense system1. It primarily involves the oxidation of DNA purine and pyrimidine bases2,3. This oxidative modification of DNA bases not only compromises the integrity of the genome but also encompasses a wide range of pathological issues, including cancer, neurodegenerative diseases, and cardiovascular diseases4,5. The guanine base in DNA has the lowest reduction potential and is the most su....

Protocol

1. Construction of an H2O2 -induced DNA oxidative damage model in MCF-7 cells

  1. MCF-7 cell recovery
    1. Transfer the cell culture cryogenic tube, which contains 3.5 x 106 MCF-7 cells and is stored in a -80°C refrigerator, rapidly to a foam box containing liquid nitrogen. Retrieve the tube with forceps and place it in a 37 °Cconstant temperature water bath for approximately 1 min to thaw the preserved cells.
      NOTE: During.......

Representative Results

As illustrated in Figure 3, the X-axis denotes the concentration of H2O2 applied to MCF-7 cells, while the Y-axis indicates cell viability. Treatment with 0.75 mM for 12 h reduced the viability of MCF-7 cells to 67%. Concomitant with the increase in concentration, there was a significant decrease in the viability of MCF-7 cells, particularly at a concentration of 1.5 mM, where the viability decreased to below 3% (Table 1). The experimental results sugge.......

Discussion

The development of ELISA methods holds great importance for both existing and new DNA damage detection methodologies. In comparison to traditional HPLC and mass spectrometry techniques, this approach not only is user-friendly but also exhibits high sensitivity and meets the demands of high-throughput screening30. This enables the monitoring of 8-oxo-dG in large-scale disease screening studies, facilitating a deeper understanding of the correlation between this biomarker and various diseases.

<.......

Acknowledgements

This work was supported by the Jiangsu Higher Education Institution Innovative Research Team for Science and Technology (2021), Program of Jiangsu Vocational College Engineering Technology Research Center (2023), Key Technology Programme of Suzhou People's Livelihood Technology Projects (SKY2021029), Open Project of Jiangsu Biobank of Clinical Resources (TC2021B009), Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University (GZK12023013), Programs of the Suzhou Vocational Health College (SZWZYTD202201), and Qing-Lan Project of Jiangsu Province in China (2021, 2022).

....

Materials

NameCompanyCatalog NumberComments
0.25% Trypsin-EDTA(1x)Gibco25200-072
Cell Counting Kit-8DojindoCK04
Cell Counting PlateQiuJingXB-K-25
CO2 incubatorThermo51032872
DMEM basic(1X)GibcoC11995500BT
FBSPANST30-3302
GraphPad Prism X9GraphPad Softwarestatistical analysis software
H2O2(3%)Jiangxi Caoshanhu Disinfection Co.,Ltd.1028348
high-speed centrifugeThermo 9AQ2861
Human 8-oxo-dG ELISA KitZcibioZC-55410
L-1000XLS+ PipettesRainin17014382
L-20XLS+ PipettesRainin17014392
liquid nitrogen tankMvecryogeYDS-175-216
MCF-7 CELLBNCCBNCC100137
Multiskan FC microplate photometerThermo1410101
PBSSolarbioP1020
Penicillin-Streptomycin Solution, 100XBeyotimeC0222
Trinocular live cell microscopeMotic1.1001E+12
Ultra-low temperature freezerHaireV118574

References

  1. Cooke, M. S., Evans, M. D., Dizdaroglu, M., Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. Faseb J. 17 (10), 1195-1214 (2003).
  2. Dizdaroglu, M., Jaruga, P. Mechanisms of free radical-induced damage to DNA.

Explore More Articles

8 oxo dGOxidative DNA DamageELISA AssayMCF 7 CellsHydrogen PeroxideDNA Damage DetectionColorimetric MethodQuantificationSandwich ELISA

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved