JoVE Logo

Oturum Aç

18.12 : Mixed Strategies

In game theory, mixed strategies involve players choosing their actions randomly from a set of available options. This approach contrasts with pure strategies, where players select a specific action with certainty. Mixed strategies become relevant in scenarios where there is no pure strategy equilibrium.

A mixed-strategies Nash equilibrium occurs when players adopt strategies so that no one can benefit by unilaterally changing their own strategy, given the strategies of the others. In this equilibrium, every player's strategy is an optimal response to the others.

Consider the game of rock-paper-scissors, where players can choose between three options: rock, paper, or scissors. In this game, rock beats scissors, scissors beat paper, and paper beats rock. A tie occurs if both players select the same item. Since each choice can be countered, there is no dominant move, leading to the absence of a pure-strategy Nash equilibrium.

However, a mixed-strategies Nash equilibrium exists where each player selects either rock, paper, and scissors with equal probability (one-third each). This random strategy ensures unpredictability, maintaining a balance as no player can foresee the other's move.

This equilibrium demonstrates how mixed strategies can stabilize games by neutralizing direct counter-actions between players.

Etiketler

Mixed StrategiesGame TheoryPure StrategiesNash EquilibriumRock paper scissorsOptimal ResponseRandom StrategyUnpredictabilityCounter actionsStrategic Choices

Bölümden 18:

article

Now Playing

18.12 : Mixed Strategies

Game Theory

51 Görüntüleme Sayısı

article

18.1 : Introduction to Game Theory

Game Theory

117 Görüntüleme Sayısı

article

18.2 : Cooperative vs. Non-Cooperative Games

Game Theory

140 Görüntüleme Sayısı

article

18.3 : Player and Strategies

Game Theory

44 Görüntüleme Sayısı

article

18.4 : Zero-Sum and Non-Zero-Sum Game

Game Theory

192 Görüntüleme Sayısı

article

18.5 : Payoffs

Game Theory

37 Görüntüleme Sayısı

article

18.6 : Dominant and Dominated Strategies

Game Theory

70 Görüntüleme Sayısı

article

18.7 : Equilibrium in Dominant Strategies

Game Theory

36 Görüntüleme Sayısı

article

18.8 : Prisoner's Dilemma I

Game Theory

39 Görüntüleme Sayısı

article

18.9 : Prisoner's Dilemma II

Game Theory

32 Görüntüleme Sayısı

article

18.10 : Nash Equilibrium in One-Period Games

Game Theory

30 Görüntüleme Sayısı

article

18.11 : Multiple Equilibria

Game Theory

26 Görüntüleme Sayısı

article

18.13 : The Maximin Strategy I

Game Theory

64 Görüntüleme Sayısı

article

18.14 : The Maximin Strategy II

Game Theory

33 Görüntüleme Sayısı

article

18.15 : Finitely Repeated Games

Game Theory

26 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır