Oturum Aç

Belirli bir dalga boyundaki ışık metal bir yüzeye çarptığında, elektronlar yayılır. Buna fotoelektrik olay denir. Bu tür elektron emisyonlarına neden olabilecek minimum ışık frekansına metale özgü eşik frekansı denir. Eşik frekansından daha düşük frekanslı ışık, yüksek yoğunlukta olsa bile elektron emisyonunu başlatamaz. Bununla birlikte, frekans eşik değerden yüksek olduğunda, atılan elektron sayısı doğrudan ışının yoğunluğu ile orantılıdır.

Klasik dalga teorisine göre, bir dalganın enerjisi frekansına değil yoğunluğuna (genliğine bağlıdır) bağlıdır. Bu gözlemlerin bir kısmı, belirli bir süre içinde atılan elektron sayısının parlaklık arttıkça arttığı görülmesiydi. 1905'te Albert Einstein, Planck'ın nicemleme bulgularını ışığın gözden düşmüş parçacık görünümüne dahil ederek paradoksu çözmeyi başardı.

Einstein, Planck'ın varsaydığı nicelenmiş enerjilerin fotoelektrik etkideki ışığa uygulanabileceğini savundu. Metal yüzeye çarpan ışık bir dalga olarak görülmemeli, bunun yerine enerjisi frekanslarına bağlı olan bir parçacık akışı (daha sonra fotonlar olarak adlandırılır) olarak görülmelidir.Bir ışık paketindeki enerji miktarı (E) aşağıdaki denkleme göre frekansına (ν) bağlıdır:

Eq1

where h Planck sabitidir.

Fotoelektrik olay, ışığın nicemlendiğini varsayarak tanımlanabilir. Bir elektron tarafından deneyimlenen bağlanma enerjisinin (Φ) üstesinden gelmek için belirli bir minimum enerji gerekir. Bu aynı zamanda metalin iş fonksiyonu (W) olarak da bilinir.

Metaldeki elektronlar, onları orada tutan belirli miktarda bağlanma enerjisine sahip olduklarından, çarpan ışığının elektronları serbest bırakmak için daha fazla enerjiye sahip olması gerekir. Düşük frekanslı ışığın fotonları, elektronları metalden fırlatmaya yetecek kadar enerji içermez. Metal uzun süre böyle bir ışığa maruz kalsa bile elektron emisyonu gözlenmez. Bir elektron ancak iş fonksiyonundan daha büyük enerjiye sahip bir foton metale çarptığında yayılabilir.

Eq1

Fotonun fazla enerjisi, yayılan elektronun kinetik enerjisine dönüştürülür.

Eq1

Bu nedenle, elektronlar, yeterli enerjiye (eşikten daha büyük bir frekansa) sahip fotonlar tarafından vurulduğunda dışarı atılır. Gelen ışığın frekansı ne kadar büyükse, kaçan elektronlara çarpışmaların verdiği kinetik enerji o kadar büyük olur. Einstein ayrıca ışık yoğunluğunun gelen dalganın genliğine bağlı olmadığını, bunun yerine belirli bir süre içinde yüzeye çarpan fotonların sayısına karşılık geldiğini savundu. Püskürtülen elektronların sayısı parlaklıkla artar. Gelen fotonların sayısı arttıkça, bazı elektronlarla çarpışmaları daha olasıdır.

Fotoelektrik olay güçlü bir şekilde ışığın parçacık davranışını gösterir. Einstein, fotoelektrik olayı açıklaması nedeniyle 1921'de Nobel Fizik Ödülü'nü kazandı. Birçok ışık fenomeni dalgalar veya partiküller olarak açıklanabilse de, ışık çift yarıktan geçerken elde edilen girişim desenleri gibi bazı fenomenler, ışığın partikül görünümüne tamamen aykırı iken, fotoelektrik gibi diğer fenomenler etkisi, ışığın dalga görünümüne tamamen aykırıdır. Her nasılsa, derin bir temel seviyede hala tam olarak anlaşılamamıştır, ışık hem dalgalı hem de parçacık benzeridir. Bu dalga-parçacık ikiliği olarak bilinir.

Bu metin bu kaynaktan uyarlanmıştır: Openstax, Chemistry 2e, Section 6.1: Electromagnetic Energy.

Etiketler

Photoelectric EffectWavelengthFrequencyMetalElectronsThreshold FrequencyLight ParticlesPhotonEnergyPlanck s ConstantBinding EnergyWork FunctionAttractive ForcesKinetic Energy

Bölümden 7:

article

Now Playing

7.4 : Fotoelektrik Olay

Atomların Elektronik Yapısı

29.0K Görüntüleme Sayısı

article

7.1 : Işığın Dalga Doğası

Atomların Elektronik Yapısı

47.8K Görüntüleme Sayısı

article

7.2 : Elektromanyetik Spektrum

Atomların Elektronik Yapısı

52.1K Görüntüleme Sayısı

article

7.3 : Girişim ve Kırınım

Atomların Elektronik Yapısı

29.6K Görüntüleme Sayısı

article

7.5 : Bohr Modeli

Atomların Elektronik Yapısı

49.0K Görüntüleme Sayısı

article

7.6 : Emisyon Spektrumu

Atomların Elektronik Yapısı

48.6K Görüntüleme Sayısı

article

7.7 : De Broglie Dalga Boyu

Atomların Elektronik Yapısı

25.1K Görüntüleme Sayısı

article

7.8 : Belirsizlik İlkesi

Atomların Elektronik Yapısı

22.7K Görüntüleme Sayısı

article

7.9 : Atomun Kuantum-Mekanik Modeli

Atomların Elektronik Yapısı

41.4K Görüntüleme Sayısı

article

7.10 : Kuantum Sayıları

Atomların Elektronik Yapısı

33.9K Görüntüleme Sayısı

article

7.11 : Atomik Orbitaller

Atomların Elektronik Yapısı

32.7K Görüntüleme Sayısı

article

7.12 : Pauli Dışarlama İlkesi

Atomların Elektronik Yapısı

32.8K Görüntüleme Sayısı

article

7.13 : Atomik Orbitallerin Enerjileri

Atomların Elektronik Yapısı

23.5K Görüntüleme Sayısı

article

7.14 : Aufbau İlkesi ve Hund Kuralı

Atomların Elektronik Yapısı

41.9K Görüntüleme Sayısı

article

7.15 : Çok Elektronlu Atomlarının Elektron Konfigürasyonu

Atomların Elektronik Yapısı

36.8K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır