Oturum Aç

Glycosylation, the most common post-translational modification for proteins, serves diverse functions. Adding sugars to proteins makes the proteins more resistant to proteolytic digestion. Glycosylated proteins can act as markers and receptors to promote cell-cell adhesion. Additionally, they have many essential quality control functions in the cell, such as correct protein folding and facilitating transport of misfolded proteins to the cytosol, which can be degraded.

Glycosylation occurs in successive stages of protein synthesis when the peptide moves from one Golgi cisterna to the next. For example, mannose is removed, and N-acetylglucosamine is added in the cis and medial cisternae. Similarly, galactose and sialic acid are added in the trans-Golgi cisterna.

Based on the amino acid sidechain to which glycans attach, glycosylated proteins or glycoproteins can have N-glycosidic and O-glycosidic bonds. N-linked oligosaccharides are carbohydrate units attached to the amide nitrogen of asparagine, whereas O-linked oligosaccharides are connected to the hydroxyl groups of serine and threonine residues. Glycosylation serves many purposes in protein folding, such as making the intermediates more soluble to prevent aggregation. Glycans can also act as biochemical markers of certain diseases. Recent interest in the study of such glycan markers has led scientists to investigate the “glyco-code.” The glyco-code, analogous to the cell’s genome or the proteome, is information encoded by the structurally diverse carbohydrate forms and their conjugates. The complex glycan structures and their spatial distribution in different cells encode biological information presenting polysaccharides as the third alphabet of life.

Etiketler
Protein GlycosylationPost translational ModificationSugarsProteolytic DigestionMarkersReceptorsCell cell AdhesionQuality Control FunctionsCorrect Protein FoldingTransport Of Misfolded ProteinsGolgi CisternaMannoseN acetylglucosamineGalactoseSialic AcidN glycosidic BondsO glycosidic BondsAsparagineSerine And Threonine ResiduesProtein FoldingSolubilityAggregation PreventionBiochemical MarkersGlycan Markers

Bölümden 17:

article

Now Playing

17.13 : Protein Glycosylation

Hücre içi Membran Trafiği

6.3K Görüntüleme Sayısı

article

17.1 : Membran Trafiğine Giriş

Hücre içi Membran Trafiği

6.1K Görüntüleme Sayısı

article

17.2 : COP Kaplı Veziküller

Hücre içi Membran Trafiği

7.1K Görüntüleme Sayısı

article

17.3 : Clathrin Kaplı Veziküller

Hücre içi Membran Trafiği

6.2K Görüntüleme Sayısı

article

17.4 : Fosfoinositidler ve PIP'ler

Hücre içi Membran Trafiği

6.0K Görüntüleme Sayısı

article

17.5 : Ceket Montajı ve GTPazlar

Hücre içi Membran Trafiği

3.4K Görüntüleme Sayısı

article

17.6 : Kaplanmış Veziküllerin Sıkışması

Hücre içi Membran Trafiği

2.8K Görüntüleme Sayısı

article

17.7 : Rab Proteinleri

Hücre içi Membran Trafiği

3.7K Görüntüleme Sayısı

article

17.8 : Rab Çağlayanlar

Hücre içi Membran Trafiği

2.6K Görüntüleme Sayısı

article

17.9 : SNARE'ler ve Membran Füzyonu

Hücre içi Membran Trafiği

8.0K Görüntüleme Sayısı

article

17.10 : Veziküler Tübüler Kümeler

Hücre içi Membran Trafiği

2.2K Görüntüleme Sayısı

article

17.11 : ER Alma Yolu

Hücre içi Membran Trafiği

3.5K Görüntüleme Sayısı

article

17.12 : Golgi Aygıtı

Hücre içi Membran Trafiği

10.3K Görüntüleme Sayısı

article

17.14 : Proteoglikanlar

Hücre içi Membran Trafiği

3.8K Görüntüleme Sayısı

article

17.15 : Oligosakkarit Grubu

Hücre içi Membran Trafiği

2.7K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır